# American Institute of Mathematical Sciences

January  2017, 13(1): 329-347. doi: 10.3934/jimo.2016020

## Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits

 Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan

* Corresponding author: Yu-Chung Tsao

Received  January 2015 Published  March 2016

Non-instantaneously deteriorating products retain their quality for a certain period before beginning to deteriorate. Retailers commonly adjust their retail prices when products shift from a non-deteriorating state to a deteriorating state in order to stimulate demand. It is essential to consider this price adjustment for inventory models of non-instantaneously deteriorating products under trade credit, due to the fact that the calculation of earned interest is based on the retail price. This paper considers the problem of ordering non-instantaneously deteriorating products under price adjustment and trade credit. Our objective was to determine the optimal replenishment cycle time while minimizing total costs. The problem is formulated as three piecewise nonlinear functions, which are solved through optimization. Numerical simulation is used to illustrate the solution procedures and discuss how system parameters influence inventory decisions and total cost. We also show that a policy of price adjustment is superior to that of fixed pricing with regard to profit maximization.

Citation: Yu-Chung Tsao. Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits. Journal of Industrial & Management Optimization, 2017, 13 (1) : 329-347. doi: 10.3934/jimo.2016020
##### References:

show all references

##### References:
The graphic illustrations of TC versus T

1. When $t_{d}$=0.5 and $t_{C}$=0.32. When $t_{d}$=0.3 and $t_{C}$=0.5 3. When $t_{d}$=0.5 and $t_{C}$=0.5

Effects of replenishment cycle time on total cost
 When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.5$ $50\%T^{*}$ TC=481.46 $(9.64\%)$ ${}^{a}$ TC=448.79 $(8.75\%)$ TC=$471.03 (9.77\%)$ $75\%T^{*}$ TC=446.18$(1.61\%)$ TC=$418.69 (1.46\%)$ TC=436.08$(1.63\%)$ $T^{*}$ TC=439.13$(0\%)$ TC=412.67$(0\%)$ TC=429.09$(0\%)$ $125\%T^{*}$ TC=443.36 $(0.96\%)$ TC=416.28$(0.87\%)$ TC=433.28$(0.98\%)$ $150\%T^{*}$ TC=453.24$(3.21\%)$ TC=424.71$(2.92\%)$ TC=443.07$(3.26\%)$
 When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$ When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.5$ $50\%T^{*}$ TC=481.46 $(9.64\%)$ ${}^{a}$ TC=448.79 $(8.75\%)$ TC=$471.03 (9.77\%)$ $75\%T^{*}$ TC=446.18$(1.61\%)$ TC=$418.69 (1.46\%)$ TC=436.08$(1.63\%)$ $T^{*}$ TC=439.13$(0\%)$ TC=412.67$(0\%)$ TC=429.09$(0\%)$ $125\%T^{*}$ TC=443.36 $(0.96\%)$ TC=416.28$(0.87\%)$ TC=433.28$(0.98\%)$ $150\%T^{*}$ TC=453.24$(3.21\%)$ TC=424.71$(2.92\%)$ TC=443.07$(3.26\%)$
Effects of replenishment cycle time on total cost (When ${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.89 403.24 h=2 2.31 439.13 h=3 1.99 469.42 R =40 2.06 420.81 R =80 2.31 439.13 R =120 2.53 455.65 $\theta =0.05$ 2.63 425.04 $\theta=0.1$ 2.31 439.13 $\theta=0.15$ 2.10 450.08 $\lambda$=0.1 1.91 470.58 $\lambda$=0.2 2.31 439.13 $\lambda$=0.3 3.10 398.34 $I_{e}=0.05$ 2.32 440.10 $I_{e}=0.10$ 2.31 439.13 $I_{e}=0.15$ 2.30 438.15 $I_{P} =0.10$ 2.56 426.14 $I_{P}=0.15$ 2.31 439.13 $I_{P}=0.20$ 2.12 450.65 $D_{1}=25$ 1.33 367.97 $D_{1}=50$ 2.31 439.13 $D_{1}=75$ 2.98 488.22 $D_{2}=15$ 3.82 274.97 $D_{2}=30$ 2.31 439.13 $D_{2}=45$ 1.50 569.49
 Parameter $T^{*}$ $TC^{*}$ h =1 2.89 403.24 h=2 2.31 439.13 h=3 1.99 469.42 R =40 2.06 420.81 R =80 2.31 439.13 R =120 2.53 455.65 $\theta =0.05$ 2.63 425.04 $\theta=0.1$ 2.31 439.13 $\theta=0.15$ 2.10 450.08 $\lambda$=0.1 1.91 470.58 $\lambda$=0.2 2.31 439.13 $\lambda$=0.3 3.10 398.34 $I_{e}=0.05$ 2.32 440.10 $I_{e}=0.10$ 2.31 439.13 $I_{e}=0.15$ 2.30 438.15 $I_{P} =0.10$ 2.56 426.14 $I_{P}=0.15$ 2.31 439.13 $I_{P}=0.20$ 2.12 450.65 $D_{1}=25$ 1.33 367.97 $D_{1}=50$ 2.31 439.13 $D_{1}=75$ 2.98 488.22 $D_{2}=15$ 3.82 274.97 $D_{2}=30$ 2.31 439.13 $D_{2}=45$ 1.50 569.49
Effects of system parameters (when${\rm \; }t_{d}=0.5$ and $t_{C}=0.3$)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.40 382.19 h=2 1.91 412.67 h=3 1.63 438.08 R =40 1.61 389.91 R =80 1.91 2.17 R =120 412.67 432.30 $\theta$=0.05 2.16 399.93 $\theta=0.1$ 1.91 412.67 $\theta=0.15$ 1.74 423.22 $\lambda$=0.1 1.60 438.45 $\lambda=0.2$ 1.91 412.67 $\lambda=0.3$ 2.49 380.27 $I_{e}$=0.05 1.95 416.21 $I_{e}=0.10$ 1.91 412.67 $I_{e}=0.15$ 1.86 409.05 $I_{P}$=0.10 2.10 404.72 $I_{P}=0.15$ 1.91 412.67 $I_{P}=0.20$ 1.76 419.51 $D_{1}$=25 1.32 368.04 $D_{1}=50$ 1.91 412.67 $D_{1}=75$ 2.35 446.46 $D_{2}=15$ 3.09 251.14 $D_{2}=30$ 1.91 412.67 $D_{2}=45$ 1.29 549.00
 Parameter $T^{*}$ $TC^{*}$ h =1 2.40 382.19 h=2 1.91 412.67 h=3 1.63 438.08 R =40 1.61 389.91 R =80 1.91 2.17 R =120 412.67 432.30 $\theta$=0.05 2.16 399.93 $\theta=0.1$ 1.91 412.67 $\theta=0.15$ 1.74 423.22 $\lambda$=0.1 1.60 438.45 $\lambda=0.2$ 1.91 412.67 $\lambda=0.3$ 2.49 380.27 $I_{e}$=0.05 1.95 416.21 $I_{e}=0.10$ 1.91 412.67 $I_{e}=0.15$ 1.86 409.05 $I_{P}$=0.10 2.10 404.72 $I_{P}=0.15$ 1.91 412.67 $I_{P}=0.20$ 1.76 419.51 $D_{1}$=25 1.32 368.04 $D_{1}=50$ 1.91 412.67 $D_{1}=75$ 2.35 446.46 $D_{2}=15$ 3.09 251.14 $D_{2}=30$ 1.91 412.67 $D_{2}=45$ 1.29 549.00
Effects of system parameters (when${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5)
 Parameter $T^{*}$ $TC^{*}$ h =1 2.83 383.86 h=2 2.27 429.09 h=3 1.95 458.90 R =40 2.01 410.40 R =80 2.27 429.09 R =120 2.49 445.90 $\theta$=0.05 2.56 415.86 $\theta$=0.1 2.27 429.09 $\theta$=0.15 2.07 439.42 $\lambda$=0.1 1.88 459.17 $\lambda$=0.2 2.27 429.09 $\lambda$=0.3 3.00 390.41 $I_{e}$=0.05 2.30 431.83 $I_{e}$=0.10 2.27 429.09 $I_{e}$=0.15 2.23 426.31 $I_{P}$=0.10 2.51 418.60 $I_{P}$=0.15 2.27 429.09 $I_{P}$=0.20 2.09 438.18 $D_{1}$=25 1.33 359.50 $D_{1}$=50 2.27 429.09 $D_{1}$=75 2.92 477.32 $D_{2}$=15 3.75 269.41 $D_{2}$=30 2.27 429.09 $D_{2}$=45 1.47 555.33
 Parameter $T^{*}$ $TC^{*}$ h =1 2.83 383.86 h=2 2.27 429.09 h=3 1.95 458.90 R =40 2.01 410.40 R =80 2.27 429.09 R =120 2.49 445.90 $\theta$=0.05 2.56 415.86 $\theta$=0.1 2.27 429.09 $\theta$=0.15 2.07 439.42 $\lambda$=0.1 1.88 459.17 $\lambda$=0.2 2.27 429.09 $\lambda$=0.3 3.00 390.41 $I_{e}$=0.05 2.30 431.83 $I_{e}$=0.10 2.27 429.09 $I_{e}$=0.15 2.23 426.31 $I_{P}$=0.10 2.51 418.60 $I_{P}$=0.15 2.27 429.09 $I_{P}$=0.20 2.09 438.18 $D_{1}$=25 1.33 359.50 $D_{1}$=50 2.27 429.09 $D_{1}$=75 2.92 477.32 $D_{2}$=15 3.75 269.41 $D_{2}$=30 2.27 429.09 $D_{2}$=45 1.47 555.33
Effects of system parameters (when${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5)
 Parameter $T^{*}$ $TC^{*}$ ${\rm \; }t_{d}=0.1$, $t_{C}=0.3$ 1.58 407.73 ${\rm \; }t_{d}=0.3$, $t_{C}=0.3$ 1.93 424.85 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.7$, $t_{C}=0.3$ 2.70 452.24 ${\rm \; }t_{d}=0.9$, $t_{C}=0.3$ 3.10 464.39 ${\rm \; }t_{d}=0.5$, $t_{C}=0.1$ 2.34 448.68 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.5$, $t_{C}=0.5$ 2.27 429.09 ${\rm \; }t_{d}=0.5$, $t_{C}=0.7$ 2.22 415.92 ${\rm \; }t_{d}=0.5$, $t_{C}=0.9$ 2.18 403.25
 Parameter $T^{*}$ $TC^{*}$ ${\rm \; }t_{d}=0.1$, $t_{C}=0.3$ 1.58 407.73 ${\rm \; }t_{d}=0.3$, $t_{C}=0.3$ 1.93 424.85 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.7$, $t_{C}=0.3$ 2.70 452.24 ${\rm \; }t_{d}=0.9$, $t_{C}=0.3$ 3.10 464.39 ${\rm \; }t_{d}=0.5$, $t_{C}=0.1$ 2.34 448.68 ${\rm \; }t_{d}=0.5$, $t_{C}=0.3$ 2.31 439.13 ${\rm \; }t_{d}=0.5$, $t_{C}=0.5$ 2.27 429.09 ${\rm \; }t_{d}=0.5$, $t_{C}=0.7$ 2.22 415.92 ${\rm \; }t_{d}=0.5$, $t_{C}=0.9$ 2.18 403.25
Comparison of two-phase pricing and one-phase pricing
 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.3 When ${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5 Two-phase pricing $p_{1}$=39.22 $p_{1}$=38.28 $p_{1}$=38.81 $p_{2}$=23.77 $p_{2}$=28.48 $p_{2}$=23.25 T=1.19 T=2.33 T=1.10 TP=614.40 $(+14.05\%){}^{a}$ TP=415.09 $(+6.73\%){}^{ }$ TP=658.51 $(+14.13\%)$ One-phase pricing p=30.28 p=30.94 p=30.39 T=1.46 T=2.45 T=1.35 TP=538.69 TP=388.92 TP=576.50 a. the percentage of profit increasing
 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.3 When ${\rm \; }t_{d}$=0.3 and $t_{C}$=0.5 When ${\rm \; }t_{d}$=0.5 and $t_{C}$=0.5 Two-phase pricing $p_{1}$=39.22 $p_{1}$=38.28 $p_{1}$=38.81 $p_{2}$=23.77 $p_{2}$=28.48 $p_{2}$=23.25 T=1.19 T=2.33 T=1.10 TP=614.40 $(+14.05\%){}^{a}$ TP=415.09 $(+6.73\%){}^{ }$ TP=658.51 $(+14.13\%)$ One-phase pricing p=30.28 p=30.94 p=30.39 T=1.46 T=2.45 T=1.35 TP=538.69 TP=388.92 TP=576.50 a. the percentage of profit increasing
 [1] Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020138 [2] Liang Bai, Juan J. Nieto, José M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1915-1930. doi: 10.3934/cpaa.2020084 [3] Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084 [4] Jui-Jung Liao, Wei-Chun Lee, Kuo-Nan Huang, Yung-Fu Huang. Optimal ordering policy for a two-warehouse inventory model use of two-level trade credit. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1661-1683. doi: 10.3934/jimo.2017012 [5] Chui-Yu Chiu, Ming-Feng Yang, Chung-Jung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial & Management Optimization, 2013, 9 (4) : 945-965. doi: 10.3934/jimo.2013.9.945 [6] Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933 [7] Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091 [8] Jun Li, Hairong Feng, Mingchao Wang. A replenishment policy with defective products, backlog and delay of payments. Journal of Industrial & Management Optimization, 2009, 5 (4) : 867-880. doi: 10.3934/jimo.2009.5.867 [9] Shuren Liu, Qiying Hu, Yifan Xu. Optimal inventory control with fixed ordering cost for selling by internet auctions. Journal of Industrial & Management Optimization, 2012, 8 (1) : 19-40. doi: 10.3934/jimo.2012.8.19 [10] Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425 [11] Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial & Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263 [12] Yanju Zhou, Zhen Shen, Renren Ying, Xuanhua Xu. A loss-averse two-product ordering model with information updating in two-echelon inventory system. Journal of Industrial & Management Optimization, 2018, 14 (2) : 687-705. doi: 10.3934/jimo.2017069 [13] Yiju Wang, Wei Xing, Hengxia Gao. Optimal ordering policy for inventory mechanism with a stochastic short-term price discount. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018199 [14] Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010 [15] Kun-Jen Chung, Pin-Shou Ting. The inventory model under supplier's partial trade credit policy in a supply chain system. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1175-1183. doi: 10.3934/jimo.2015.11.1175 [16] Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096 [17] Sankar Kumar Roy, Magfura Pervin, Gerhard Wilhelm Weber. Imperfection with inspection policy and variable demand under trade-credit: A deteriorating inventory model. Numerical Algebra, Control & Optimization, 2020, 10 (1) : 45-74. doi: 10.3934/naco.2019032 [18] Hailong Ye, Jingxue Yin. Instantaneous shrinking and extinction for a non-Newtonian polytropic filtration equation with orientated convection. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1743-1755. doi: 10.3934/dcdsb.2017083 [19] Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1345-1373. doi: 10.3934/jimo.2018098 [20] Rafael Obaya, Víctor M. Villarragut. Direct exponential ordering for neutral compartmental systems with non-autonomous $\mathbf{D}$-operator. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 185-207. doi: 10.3934/dcdsb.2013.18.185

2018 Impact Factor: 1.025

## Tools

Article outline

Figures and Tables