• Previous Article
    Markowitz's mean-variance optimization with investment and constrained reinsurance
  • JIMO Home
  • This Issue
  • Next Article
    Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits
January  2017, 13(1): 349-373. doi: 10.3934/jimo.2016021

Impact of price cap regulation on supply chain contracting between two monopolists

Institute of Systems Engineering, Tianjin University, Tianjin 300072, China

* Corresponding author: Yanfei Lan, Email: lanyf@tju.edu.cn

Received  August 2013 Published  March 2016

This paper considers a supply chain with an unregulated upstream monopolist (she) supplying a kind of products to a regulated downstream monopolist (he). The upstream monopolist's production efficiency, which represents her type, is only privately known to herself. When the downstream monopolist trades with the upstream monopolist, his pricing discretion is constrained by price cap regulation (PCR). We model this problem as a game of adverse selection with the price cap constraint. In this model, the downstream monopolist offers a menu of contracts, each of which consists of two parameters: the transfer payment and the retail price. We show that private information can weaken PCR's impact on the optimal contract, and PCR can dampen the effects of private information. We also shed light on the influences of private information and PCR on the optimal contract, the downstream monopolist's profit, the upstream monopolist's profit, the consumers' surplus and the social total welfare, respectively. Finally, a numerical example is given to illustrate the proposed results.

Citation: Jing Feng, Yanfei Lan, Ruiqing Zhao. Impact of price cap regulation on supply chain contracting between two monopolists. Journal of Industrial & Management Optimization, 2017, 13 (1) : 349-373. doi: 10.3934/jimo.2016021
References:
[1]

M. Armstrong and J. Vickers, Multiproduct price regulation under asymmetric information, J. Ind. Econ., 8 (2000), 137-160.  doi: 10.1111/1467-6451.00115.  Google Scholar

[2]

M. Armstrong and J. Vickers, Welfare effects of price discrimination by a regulated monopolist, Rand J. Econ., 22 (1991), 571-580.   Google Scholar

[3]

M. Armstrong and D. Sappington, Recent developments in the theory of regulation, in Handbook of Industrial Organization, Elsevier Science Publishers, (2007), 1557-1700.   Google Scholar

[4]

Armstrong1994 M. Armstrong, S. Cowan and J. Vickers, Regulatory Reform: Economic Analysis and the British Experience, MIT Press, Cambridge, MA, 1994. Google Scholar

[5]

M. Armstrong, Multiproduct nonlinear pricing, Econometrica, 64 (1996), 51-76.  doi: 10.2307/2171924.  Google Scholar

[6]

D. Baron and R. Myerson, Regulating a monopolist with unknown costs, Econometrica, 50 (1982), 911-930.  doi: 10.2307/1912769.  Google Scholar

[7]

R. Barlow and F. Proschan, Mathematical Theory of Reliability, John Wiley and Sons, New York, 1965. Google Scholar

[8]

M. Bagnoli and T. Bergstrom, Log-concave probability and its applications, Econ. Theor., 26 (2005), 445-469.  doi: 10.1007/s00199-004-0514-4.  Google Scholar

[9]

A. BurnetasS. Gilbert and C. Smith, Quantity discount in single period supply contracts with asymmetric demand information, IIE Trans., 39 (2007), 465-479.   Google Scholar

[10]

M. CakanyildirimQ. FengX. Gan and S. Sethi, Contracting and coordination under asymmetric production cost information, Prod. Oper. Manag., 21 (2012), 345-360.   Google Scholar

[11]

G. Cachon, Competitive supply chain inventory management, in Quantitative Models for Supply Chain Management, Kluwer, Boston, MA, 1998, 111–146. doi: 10.1007/978-1-4615-4949-9-5.  Google Scholar

[12]

G. Cachon, Supply chain coordination with contracts, in Handbook in Operations Research and Management Science: Supply Chain Management, Elsevier Science Publishers, North Holland, The Netherlands, 2003, 227–339. doi: 10.1016/S0927-0507(03)11006-7.  Google Scholar

[13]

G. Cachon and M. Lariviere, Contracting to assure supply: How to share demand forecasts in supply chain, Manage. Sci., 47 (2001), 629-646.   Google Scholar

[14]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[15]

C. Corbett and X. Groote, A supplier's optimal quantity discount policy under asymmetric information, Manage. Sci., 46 (2000), 444-450.   Google Scholar

[16]

C. CorbettD. Zhou and C. Tang, Designing supply contracts: Contract type and information asymmetry, Manage. Sci., 50 (2004), 550-559.   Google Scholar

[17]

A. Ha, Supplier-buyer contracting: Asymmetric cost information and cutoff policy for buyer participation, Nav. Res. Log., 48 (2001), 41-64.   Google Scholar

[18]

E. Inssa and F. Stroffolini, Price-cap regulation, revenue sharing and information acquisition, Inf. Econ. Policy, 17 (2005), 217-230.   Google Scholar

[19]

E. Inssa and F. Stroffolini, Price-cap regulation and information acquisition, Int. J. Ind. Organ., 20 (2002), 1013-1036.   Google Scholar

[20]

A. IozziJ. Poritz and E. Valentini, Socal preferences and price cap regualtion, J. Public Econ. Theory, 4 (2002), 95-114.   Google Scholar

[21]

J. KangD. Weisman and M. Zhang, Do consumers benefit from tighter price cap regulation?, Econ. Lett., 67 (2000), 113-119.  doi: 10.1016/S0165-1765(99)00252-9.  Google Scholar

[22]

P. Law, Tighter average revenue regulation can reduce consumer welfare, J. Ind. Econ., 43 (1995), 399-404.  doi: 10.2307/2950551.  Google Scholar

[23]

J. Laffont and D. Mortimort The Theory of Incentive: The Principal-Agent Model, Princeton University Press, Princeton, NJ, 2002. Google Scholar

[24]

J. Laffont and J. Rochet, Regulation of a risk averse firm, Game. Econ. Behav., 25 (1998), 149-173.  doi: 10.1006/game.1998.0639.  Google Scholar

[25]

T. Lewis and C. Garmon, Fundamentals of Incentive Regulation, 12th PURC/World Bank International Training Program on Utility Regulation and Strategy, Gainesville, 2002. Google Scholar

[26]

C. Liston, Price cap versus rate of return regulation, J. Regul. Econ., 5 (1993), 25-48.  doi: 10.1007/BF01066312.  Google Scholar

[27]

M. Lariviere, A note on probability distributions with increasing generalized failure rates, Oper. Res., 54 (2006), 602-604.  doi: 10.1287/opre.1060.0282.  Google Scholar

[28]

R. Myerson, Incentive compatibiltiy and the bargaining problem, Econometrica, 47 (1979), 61-74.  doi: 10.2307/1912346.  Google Scholar

[29]

Ö. Özer and W. Wei, Strategic commitment for optimal capacity decision under asymmetric forecast information, Manage. Sci., 52 (2006), 1238-1257.   Google Scholar

[30]

Ö. Özer and G. Raz, Supply chain sourcing under asymmetric information, Prod. Oper. Manag., 20 (2011), 92-115.   Google Scholar

[31]

J. Reitzes, Downstream price-cap regulation and upstream market power, J. Regul. Econ., 33 (2008), 179-200.   Google Scholar

[32]

D. Sappington and D. Weisman, Price cap regulation: What have we learned from 25 years of experience in the telecommunications industry?, J. Regul. Econ., 38 (2010), 227-257.   Google Scholar

[33]

Y. Shen and S. Willems, Coordinating a channel with asymmetric cost information and the manufactures' optimality, Int. J. Prod. Econ., 135 (2012), 125-135.   Google Scholar

[34]

D. Sibley, Asymmetric information, incentives and price cap regulation, Rand J. Econ., 20 (1989), 392-404.  doi: 10.2307/2555578.  Google Scholar

[35]

G. Voigt and K. Inderfurth, Supply chain coordination and setup cost reduction in case of asymmetric information, OR Spectrum, 33 (2011), 99-122.   Google Scholar

show all references

References:
[1]

M. Armstrong and J. Vickers, Multiproduct price regulation under asymmetric information, J. Ind. Econ., 8 (2000), 137-160.  doi: 10.1111/1467-6451.00115.  Google Scholar

[2]

M. Armstrong and J. Vickers, Welfare effects of price discrimination by a regulated monopolist, Rand J. Econ., 22 (1991), 571-580.   Google Scholar

[3]

M. Armstrong and D. Sappington, Recent developments in the theory of regulation, in Handbook of Industrial Organization, Elsevier Science Publishers, (2007), 1557-1700.   Google Scholar

[4]

Armstrong1994 M. Armstrong, S. Cowan and J. Vickers, Regulatory Reform: Economic Analysis and the British Experience, MIT Press, Cambridge, MA, 1994. Google Scholar

[5]

M. Armstrong, Multiproduct nonlinear pricing, Econometrica, 64 (1996), 51-76.  doi: 10.2307/2171924.  Google Scholar

[6]

D. Baron and R. Myerson, Regulating a monopolist with unknown costs, Econometrica, 50 (1982), 911-930.  doi: 10.2307/1912769.  Google Scholar

[7]

R. Barlow and F. Proschan, Mathematical Theory of Reliability, John Wiley and Sons, New York, 1965. Google Scholar

[8]

M. Bagnoli and T. Bergstrom, Log-concave probability and its applications, Econ. Theor., 26 (2005), 445-469.  doi: 10.1007/s00199-004-0514-4.  Google Scholar

[9]

A. BurnetasS. Gilbert and C. Smith, Quantity discount in single period supply contracts with asymmetric demand information, IIE Trans., 39 (2007), 465-479.   Google Scholar

[10]

M. CakanyildirimQ. FengX. Gan and S. Sethi, Contracting and coordination under asymmetric production cost information, Prod. Oper. Manag., 21 (2012), 345-360.   Google Scholar

[11]

G. Cachon, Competitive supply chain inventory management, in Quantitative Models for Supply Chain Management, Kluwer, Boston, MA, 1998, 111–146. doi: 10.1007/978-1-4615-4949-9-5.  Google Scholar

[12]

G. Cachon, Supply chain coordination with contracts, in Handbook in Operations Research and Management Science: Supply Chain Management, Elsevier Science Publishers, North Holland, The Netherlands, 2003, 227–339. doi: 10.1016/S0927-0507(03)11006-7.  Google Scholar

[13]

G. Cachon and M. Lariviere, Contracting to assure supply: How to share demand forecasts in supply chain, Manage. Sci., 47 (2001), 629-646.   Google Scholar

[14]

J. ChenH. Zhang and Y. Sun, Implementing coordination contracts in a manufacturer Stackelberg dual-channel supply chain, Omega, 40 (2012), 571-583.   Google Scholar

[15]

C. Corbett and X. Groote, A supplier's optimal quantity discount policy under asymmetric information, Manage. Sci., 46 (2000), 444-450.   Google Scholar

[16]

C. CorbettD. Zhou and C. Tang, Designing supply contracts: Contract type and information asymmetry, Manage. Sci., 50 (2004), 550-559.   Google Scholar

[17]

A. Ha, Supplier-buyer contracting: Asymmetric cost information and cutoff policy for buyer participation, Nav. Res. Log., 48 (2001), 41-64.   Google Scholar

[18]

E. Inssa and F. Stroffolini, Price-cap regulation, revenue sharing and information acquisition, Inf. Econ. Policy, 17 (2005), 217-230.   Google Scholar

[19]

E. Inssa and F. Stroffolini, Price-cap regulation and information acquisition, Int. J. Ind. Organ., 20 (2002), 1013-1036.   Google Scholar

[20]

A. IozziJ. Poritz and E. Valentini, Socal preferences and price cap regualtion, J. Public Econ. Theory, 4 (2002), 95-114.   Google Scholar

[21]

J. KangD. Weisman and M. Zhang, Do consumers benefit from tighter price cap regulation?, Econ. Lett., 67 (2000), 113-119.  doi: 10.1016/S0165-1765(99)00252-9.  Google Scholar

[22]

P. Law, Tighter average revenue regulation can reduce consumer welfare, J. Ind. Econ., 43 (1995), 399-404.  doi: 10.2307/2950551.  Google Scholar

[23]

J. Laffont and D. Mortimort The Theory of Incentive: The Principal-Agent Model, Princeton University Press, Princeton, NJ, 2002. Google Scholar

[24]

J. Laffont and J. Rochet, Regulation of a risk averse firm, Game. Econ. Behav., 25 (1998), 149-173.  doi: 10.1006/game.1998.0639.  Google Scholar

[25]

T. Lewis and C. Garmon, Fundamentals of Incentive Regulation, 12th PURC/World Bank International Training Program on Utility Regulation and Strategy, Gainesville, 2002. Google Scholar

[26]

C. Liston, Price cap versus rate of return regulation, J. Regul. Econ., 5 (1993), 25-48.  doi: 10.1007/BF01066312.  Google Scholar

[27]

M. Lariviere, A note on probability distributions with increasing generalized failure rates, Oper. Res., 54 (2006), 602-604.  doi: 10.1287/opre.1060.0282.  Google Scholar

[28]

R. Myerson, Incentive compatibiltiy and the bargaining problem, Econometrica, 47 (1979), 61-74.  doi: 10.2307/1912346.  Google Scholar

[29]

Ö. Özer and W. Wei, Strategic commitment for optimal capacity decision under asymmetric forecast information, Manage. Sci., 52 (2006), 1238-1257.   Google Scholar

[30]

Ö. Özer and G. Raz, Supply chain sourcing under asymmetric information, Prod. Oper. Manag., 20 (2011), 92-115.   Google Scholar

[31]

J. Reitzes, Downstream price-cap regulation and upstream market power, J. Regul. Econ., 33 (2008), 179-200.   Google Scholar

[32]

D. Sappington and D. Weisman, Price cap regulation: What have we learned from 25 years of experience in the telecommunications industry?, J. Regul. Econ., 38 (2010), 227-257.   Google Scholar

[33]

Y. Shen and S. Willems, Coordinating a channel with asymmetric cost information and the manufactures' optimality, Int. J. Prod. Econ., 135 (2012), 125-135.   Google Scholar

[34]

D. Sibley, Asymmetric information, incentives and price cap regulation, Rand J. Econ., 20 (1989), 392-404.  doi: 10.2307/2555578.  Google Scholar

[35]

G. Voigt and K. Inderfurth, Supply chain coordination and setup cost reduction in case of asymmetric information, OR Spectrum, 33 (2011), 99-122.   Google Scholar

Figure 1.  Information structure's impact on the optimal contract
Figure 2.  Price cap's impact on the optimal contract under full information
Figure 3.  Price cap's impact on the revenue under full information
Figure 4.  Price cap's impact on the optimal contract under private information
Figure 5.  Price cap's impact on the revenue under private information
Table 1.  Information structure's impact on contract
$Scenario$ $p$ $t$
$full$ $information$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
$private$ $information$ $x+8$ $-0.5x^{2}-x+63.3$
$Scenario$ $p$ $t$
$full$ $information$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
$private$ $information$ $x+8$ $-0.5x^{2}-x+63.3$
Table 2.  Price cap's impact on the optimal contact under full information
$Scenario$ $p^{**}$ $t^{**}$
$RPCR$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
$TPCR$ $16.75$ $-0.2x^{2}+3.25x+3.25$
$MPCR\,when\,x\geq x_{0}$ 17.75 $-0.2x^{2}+2.25x+2.25$
$MPCR\,when\, x < x_{0}$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
$Scenario$ $p^{**}$ $t^{**}$
$RPCR$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
$TPCR$ $16.75$ $-0.2x^{2}+3.25x+3.25$
$MPCR\,when\,x\geq x_{0}$ 17.75 $-0.2x^{2}+2.25x+2.25$
$MPCR\,when\, x < x_{0}$ $0.5x+13$ $-0.7x^{2}+6.5x+7$
Table 3.  Price cap's impact on the optimal contact under private information
$Scenario$ $p_{1}^{**}$ $t_{1}^{**}$
$RPCR$ $x+8$ $-0.5x^{2}-x+63.3$
$TPCR $ $16.75$ 16.3
$MPCR\, when\, x\geq x_{1}$ $17.75$ 5.175
$MPCR\,when\, x< x_{1}$ $x+8$ $-0.5x^{2}-x+63.3$
$Scenario$ $p_{1}^{**}$ $t_{1}^{**}$
$RPCR$ $x+8$ $-0.5x^{2}-x+63.3$
$TPCR $ $16.75$ 16.3
$MPCR\, when\, x\geq x_{1}$ $17.75$ 5.175
$MPCR\,when\, x< x_{1}$ $x+8$ $-0.5x^{2}-x+63.3$
Table 4.  Price cap's impacts on the downstream monopolist's profit, the consumers' surplus and the social total welfare under full information
$Scenario$ $U^{**}$ $S^{**}$ $W^{**}$
$RPCR$ $0.45x^{2}\!-\!7x+49$ $0.125x^{2}\!-\!3.5x\!+\!24.5$ $0.575x^{2}\!-\!10.5x\!+\!73.5$
$TPCR$ $0.2x^{2}\!-\!3.25x\!+\!34.94$ $5.28$ $0.2x^{2}\!-\!3.25x\!+\!40.22$
$MPCR\,when\,x\geq x_{0}$ $0.2x^{2}\!-\!2.25x\!+\!26.44$ $2.53$ $0.2x^{2}\!-\!2.25x\!+\!28.97$
$MPCR\,when\, x < x_{0}$ $0.45x^{2}\!-\!7x\!+\!49$ $0.125x^{2}\!-\!3.5x\!+\!24.5$ $0.575x^{2}\!-\!10.5x\!+\!73.5$
$Scenario$ $U^{**}$ $S^{**}$ $W^{**}$
$RPCR$ $0.45x^{2}\!-\!7x+49$ $0.125x^{2}\!-\!3.5x\!+\!24.5$ $0.575x^{2}\!-\!10.5x\!+\!73.5$
$TPCR$ $0.2x^{2}\!-\!3.25x\!+\!34.94$ $5.28$ $0.2x^{2}\!-\!3.25x\!+\!40.22$
$MPCR\,when\,x\geq x_{0}$ $0.2x^{2}\!-\!2.25x\!+\!26.44$ $2.53$ $0.2x^{2}\!-\!2.25x\!+\!28.97$
$MPCR\,when\, x < x_{0}$ $0.45x^{2}\!-\!7x\!+\!49$ $0.125x^{2}\!-\!3.5x\!+\!24.5$ $0.575x^{2}\!-\!10.5x\!+\!73.5$
Table 5.  Price cap's impacts on the downstream monopolist's profit, the upstream monopolist's profit, the consumers surplus and the social total welfare under private information
$Scenario$ $U_{1}^{**}$ $\pi_{1}^{**}$ $S_{1}^{**}$ $W_{1}^{**}$
$RPCR$ $22.53$ $0.7x^{2}\!-\!12x\!+\!51.3$ $0.5x^{2}\!-\!12x\!+\!72$ $1.2x^{2}\!-\!24x\!+\!145.83$
$TPCR$ $21.89$ $0.2x^{2}\!-\!3.25x\!+\!13.05$ $5.28$ $0.2x^{2}\!-\!3,25x\!+\!40.22$
$MPCR\,when\, x\geq x_{1}$ $22.52$ $0.2x^{2}\!-\!2.25x\!+\!2.93$ 2.53 $0.2x^{2}\!-\!2,25x\!+\!27.98$
$MPCR\,when\, x < x_{1}$ $22.52$ $0.7x^{2}\!-\!12x\!+\!51.3$ $0.5x^{2}\!-\!12x\!+\!72$ $1.2x^{2}\!-\!24x\!+\!145.82$
$Scenario$ $U_{1}^{**}$ $\pi_{1}^{**}$ $S_{1}^{**}$ $W_{1}^{**}$
$RPCR$ $22.53$ $0.7x^{2}\!-\!12x\!+\!51.3$ $0.5x^{2}\!-\!12x\!+\!72$ $1.2x^{2}\!-\!24x\!+\!145.83$
$TPCR$ $21.89$ $0.2x^{2}\!-\!3.25x\!+\!13.05$ $5.28$ $0.2x^{2}\!-\!3,25x\!+\!40.22$
$MPCR\,when\, x\geq x_{1}$ $22.52$ $0.2x^{2}\!-\!2.25x\!+\!2.93$ 2.53 $0.2x^{2}\!-\!2,25x\!+\!27.98$
$MPCR\,when\, x < x_{1}$ $22.52$ $0.7x^{2}\!-\!12x\!+\!51.3$ $0.5x^{2}\!-\!12x\!+\!72$ $1.2x^{2}\!-\!24x\!+\!145.82$
[1]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[2]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[3]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[4]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effect of disruption risk on a supply chain with price-dependent demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019095

[5]

Mingyong Lai, Hongzhao Yang, Erbao Cao, Duo Qiu, Jing Qiu. Optimal decisions for a dual-channel supply chain under information asymmetry. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1023-1040. doi: 10.3934/jimo.2017088

[6]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[7]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[8]

Apostolis Pavlou. Asymmetric information in a bilateral monopoly. Journal of Dynamics & Games, 2016, 3 (2) : 169-189. doi: 10.3934/jdg.2016009

[9]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1631-1651. doi: 10.3934/jimo.2018115

[10]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial & Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

[11]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent. Journal of Industrial & Management Optimization, 2017, 13 (2) : 873-899. doi: 10.3934/jimo.2016051

[12]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial & Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[13]

Qing-you Yan, Juan-bo Li, Ju-liang Zhang. Licensing schemes in Stackelberg model under asymmetric information of product costs. Journal of Industrial & Management Optimization, 2007, 3 (4) : 763-774. doi: 10.3934/jimo.2007.3.763

[14]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[15]

Juliang Zhang. Coordination of supply chain with buyer's promotion. Journal of Industrial & Management Optimization, 2007, 3 (4) : 715-726. doi: 10.3934/jimo.2007.3.715

[16]

Na Song, Ximin Huang, Yue Xie, Wai-Ki Ching, Tak-Kuen Siu. Impact of reorder option in supply chain coordination. Journal of Industrial & Management Optimization, 2017, 13 (1) : 449-475. doi: 10.3934/jimo.2016026

[17]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[18]

Joseph Geunes, Panos M. Pardalos. Introduction to the Special Issue on Supply Chain Optimization. Journal of Industrial & Management Optimization, 2007, 3 (1) : i-ii. doi: 10.3934/jimo.2007.3.1i

[19]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[20]

Jun Pei, Panos M. Pardalos, Xinbao Liu, Wenjuan Fan, Shanlin Yang, Ling Wang. Coordination of production and transportation in supply chain scheduling. Journal of Industrial & Management Optimization, 2015, 11 (2) : 399-419. doi: 10.3934/jimo.2015.11.399

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (35)
  • HTML views (298)
  • Cited by (1)

Other articles
by authors

[Back to Top]