[1]
|
S. Asmussen, B. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies: Example of excess-of-loss reinsurance for an insurance corporation, Finance Stochastics, 4 (2000), 299-324.
doi: 10.1007/s007800050075.
|
[2]
|
L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.
|
[3]
|
L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Mathematical Methods of Operations Research, 68 (2008), 181-205.
doi: 10.1007/s00186-007-0195-4.
|
[4]
|
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.
|
[5]
|
P. Chen, H. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.
doi: 10.1016/j.insmatheco.2008.09.001.
|
[6]
|
T. Choulli, M. Taksar and X. Y. Zhou, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quantitative Finance, 1 (2001), 573-596.
doi: 10.1088/1469-7688/1/6/301.
|
[7]
|
T. Choulli, M. Taksar and X. Y. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM Journal on Control and Optimization, 41 (2003), 1946-1979.
doi: 10.1137/S0363012900382667.
|
[8]
|
M. G. Crandell and P. Lions, Viscosity solution of Hamilton-Jacobi equations, Transactions of the American Mathematical Society, 277 (1983), 1-42.
doi: 10.1090/S0002-9947-1983-0690039-8.
|
[9]
|
C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.
doi: 10.1016/S0167-6687(00)00049-4.
|
[10]
|
B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models, Scandinavian Actuarial Journal, 1998 (1998), 166-180.
doi: 10.1016/S0167-6687(98)00007-9.
|
[11]
|
B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models with transaction costs, Insurance: Mathematics and Economics, 22 (1998), 41-51.
doi: 10.1016/S0167-6687(98)00007-9.
|
[12]
|
B. Højgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quantitative Finance, 4 (2004), 315-327.
doi: 10.1088/1469-7688/4/3/007.
|
[13]
|
C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investments for insurance portfolios, Insurance: Mathematics and Economics, 35 (2004), 21-51.
doi: 10.1016/j.insmatheco.2004.04.004.
|
[14]
|
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 41 (2002), 1540-1555.
doi: 10.1137/S0363012900378504.
|
[15]
|
P. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Ⅱ. Viscosity solutions and uniqueness, Communications in Partial Differential Equations, 8 (1983), 1229-1276.
doi: 10.1080/03605308308820301.
|
[16]
|
H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x.
|
[17]
|
H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 2001 (2001), 55-68.
doi: 10.1080/034612301750077338.
|
[18]
|
H. Schmidli, On minimising the ruin probability by investment and reinsurance, The Annals of Applied Probability, 12 (2002), 890-907.
doi: 10.1214/aoap/1031863173.
|
[19]
|
S. Z. Shi,
Convex Analysis, Shanghai Science and Technology Press, 1990.
|
[20]
|
H. M. Soner, Optimal control with state-space constrain Ⅰ, SIAM Journal on Control and Optimization, 24 (1986), 552-561.
doi: 10.1137/0324032.
|
[21]
|
H. M. Soner, Optimal control with state-space constrain Ⅱ, SIAM Journal on Control and Optimization, 24 (1986), 1110-1122.
doi: 10.1137/0324067.
|
[22]
|
M. Taksar, Optimal risk and dividend distribution control models for an insurance company, Mathematical Methods of Operations Research, 51 (2000), 1-42.
doi: 10.1007/s001860050001.
|
[23]
|
Z. W. Wang, J. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach, Insurance: Mathematics and Economics, 40 (2007), 322-334.
doi: 10.1016/j.insmatheco.2006.05.003.
|
[24]
|
H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.
|
[25]
|
J. M. Yong and X. Y. Zhou,
Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3.
|
[26]
|
X. Zhang and T. K. Siu, Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.
doi: 10.1016/j.insmatheco.2009.04.001.
|
[27]
|
X. Zhang, M. Zhou and J. Y. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Applied Stochastic Models in Business and Industry, 23 (2007), 63-71.
doi: 10.1002/asmb.637.
|
[28]
|
X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003.
|