\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal stopping problems with restricted stopping times

This research was partially supported by the Natural Science Foundation of China under Grant No. 71371074, 111 Project Grant No. B14019 and the Australian Research Council Discovery Project Grant No. DP1094153.
Abstract Full Text(HTML) Related Papers Cited by
  • This paper provides a general ground for the problems of optimal stopping times over the families of partially available (or restricted) stopping times. It subsumes the classical framework in continuous-time, discrete-time, as well as semi-Markov settings as special cases. We model the problem by a restricted pool of stopping times meeting certain natural conditions and present its solution by means of Snell's envelope technique that extends the classical results. We further extend this type of problems to the stochastic processes indexed by partially ordered set.

    Mathematics Subject Classification: Primary: 60G40; Secondary: 60G48.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. A. Bather and H. Chernoff, Sequential decisions in the control of a spaceship, Proceeding of Fifth Berkeley Symposium on Mathematical Statistics and Probability, 3 (1966), 181-207. 
    [2] A. Bensoussan, On the theory of option pricing, Acta Applicandae Mathematicae, 2 (1984), 139-158. 
    [3] J.-M. Bismut and B. Skalli, Temps d'arr$\hat{e}$t th$\hat{e}$orie g$\hat{e}$n$\hat{e}$rale de processus et processus de Markov, Z. Wasrscheinlichkeitstheorie Verw. Gebiete, 39 (1977), 301-313.  doi: 10.1007/BF01877497.
    [4] M. J. Brennan and E. S. Schwartz, Evaluating natural rescource investments, Journal of Business, 58 (1985), 135-157. 
    [5] M. Broadie and P. Glasserman, Pricing American-style securities using simulation, Journal of Economic Dynamics and Control, 21 (1997), 1323-1352.  doi: 10.1016/S0165-1889(97)00029-8.
    [6] X. CaiX. Wu and X. Zhou, Dynamically optimal policies for stochastic scheduling subject 84 to breakdown-repeat breakdowns, IEEE Transactions on Automation Science and Engineering, 85 (2005), 158-172. 
    [7] X. CaiX. Wu and X. Zhou, Stochastic scheduling subject to preemptive-repeat breakdowns with incomplete information, Operations Research, 57 (2009), 1236-1249.  doi: 10.1287/opre.1080.0660.
    [8] Y. S. Chow, H. Robbins and D. Siegmund, Great Expectations, The Theory of Optimal Stopping Houghton Mifflin, Boston, 1971.
    [9] P. Dupuis and H. Wang, Optimal stopping with random intervention times, Advances in Applied Probability, 34 (2002), 141-157.  doi: 10.1239/aap/1019160954.
    [10] E. B. Dynkin, Optimal choice of a stopping time for a Markov process, Dokl. Akad. Nauk USSR, 150 (1963), 238-240. 
    [11] A. G. Fakeev, Optimal stopping of a Markov process, Theory of Probability and Its Applications, 15 (1970), 324-331.  doi: 10.1137/1116076.
    [12] A. G. Fakeev, Optimal stopping rules for processes with continuous parameter, Theory of Probability and Its Applications, 16 (1971), 694-696.  doi: 10.1137/1115039.
    [13] A. G. Fakeev, On optimal stopping rules for stochastic processes with continuous parameter, Theory of Probability and Its Applications, 18 (1973), 304-311.  doi: 10.1137/1115039.
    [14] J. Gittins, K. Glazebrook and R. Weber, Multi-Armed Bandit Allocation Indices, 2nd edition, John Wiley & Sons, Ltd., 2011.
    [15] H. Kaspi and A. Mandelbaum, Multi-armed bandits in discrete and continuous time, Annals of Applied Probability, 8 (1998), 1270-1290.  doi: 10.1214/aoap/1028903380.
    [16] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.
    [17] N. E. Karoui, Les aspects probabilities du contrôle stochastique, Lecture Notes in Mathematics, 876, Springer-Verlag, Berlin, 1981, 73-238.
    [18] N. E. Karoui and I. Karatzas, Dynamic allocation problems in continuous time, Annals of Applied Probability, 4 (1994), 255-286.  doi: 10.1214/aoap/1177005062.
    [19] U. Krengel and L. Sucheston, Stopping rules and tactics for processes indexed by a directed set, Journal of Multivariate Analysis, 11 (1981), 199-229.  doi: 10.1016/0047-259X(81)90109-3.
    [20] G. F. Lawler and R. J. Vanderbei, Markov strategies for optimal control problems indexed by a partially ordered set, The Annals of Probability, 11 (1983), 642-647.  doi: 10.1214/aop/1176993508.
    [21] A. Mandelbaum and R. J. Vanderbei, Optimal stopping and supermartingales over partially ordered sets, Probability Theory and Related Fields, 57 (1981), 253-264.  doi: 10.1007/BF00535493.
    [22] M. P. McKean, A free boundary problem for the heat equation arising from a problem in Mathematical Economics, Industrial Management Review, 6 (1965), 32-39. 
    [23] J. F. Mertens, Processus stochastiques g$\acute{e} $n$\acute{e}$raux et surmartingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 22 (1972), 45-48.  doi: 10.1007/BF00538905.
    [24] J. Neveu, Discrete-Parameter Martingales, English translation, North-Holland, Amsterdam and American Elsevier, New York, 1975.
    [25] D. Nualart, Randomized stopping points and optimal stopping on the plane, The Annals of Probability, 20 (1992), 883-900.  doi: 10.1214/aop/1176989810.
    [26] B. Oksendal and A. Sulem, Optimal consumption and portfolio with both fixed and proportional transaction costs, SIAM Journal on Control and Optimization, 40 (2002), 1765-1790.  doi: 10.1137/S0363012900376013.
    [27] G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary Problems, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2006.
    [28] H. Pham and P. Tankov, A coupled system of integrodifferential equations arising in liquidity risk model, Applied Mathematics and Optimization, 59 (2009), 147-173.  doi: 10.1007/s00245-008-9046-9.
    [29] C. Rogers and O. Zane, A simple model of liquidity effects, in Advances in Finance and Stochastics, Essays in Honour of Dieter Sondermann (eds. K. Sandmann and P. Schoenbucher), Springer, Berlin, 2002, 161-176.
    [30] A. N. Shiryaev, Statistical Sequential Analysis, (in Russian) Nauka, Moscow, 1976.
    [31] A. N. Shiryaev, Optimal Stopping Rules, Springer-Verlag, New York, 1978.
    [32] I. L. Snell, Applications of martingale system theory, Transactions of the American Mathematical Society, 73 (1953), 293-312. 
    [33] M. E. Thompson, Continuous parameter optimal stopping problems, Z. Wahrsheinlichkeitstheorie und Verw. Gebiete, 19 (1971), 302-318.  doi: 10.1007/BF00535835.
    [34] A. Wald, Sequential Analysis, Wiley, New York, 1947.
    [35] J. B. Walsh, Optional increasing paths, in Processus Aléatoire a Deux Indices, Lecture Notes in Mathematics, 863, Springer, Berlin, 1981, 172-201.
  • 加载中
SHARE

Article Metrics

HTML views(731) PDF downloads(393) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return