In this paper we attempt to develop a parametric simplex algorithm for solving biobjective convex separable piecewise linear programming problems. The algorithm presented in this paper can be regarded as an extension of the parametric simplex algorithm for solving biobjective linear programming problems to the piecewise linear case. Analogous to the linear case, this parametric simplex algorithm provides a decomposition of parametric space. A numerical example is presented to illustrate the implementation of the algorithm.
| Citation: |
| [1] |
F. Ajili, A probe-based algorithm for piecewise linear optimization in scheduling, Annals Oper. Res., 118 (2003), 35-48.
doi: 10.1023/A:1021897321637.
|
| [2] |
C. Beltran-Royo, A conjugate Rosen's gradient projection method with global line search for piecewise linear concave optimization, Eur. J. Oper. Res., 182 (2007), 536-551.
doi: 10.1016/j.ejor.2006.08.057.
|
| [3] |
M. C. Cavichia and M. N. Arenales, Piecewise linear programming via interior points, Comput. Oper. Res., 27 (2000), 1303-1324.
doi: 10.1016/S0305-0548(99)00075-1.
|
| [4] |
A. Charnes and C. E. Lemke, Minimization of non-linear separable convex functionals, Naval Research Logistics Quarterly, 1 (1954), 301-312.
doi: 10.1002/nav.3800010408.
|
| [5] |
K. L. Croxton, B. Gendron and T. L. Magnanti, A comparison of mixed-integer programming models for non-convex piecewise linear cost minimization problems, Management Sci., 49 (2003), 1268-1273.
|
| [6] |
K. L. Croxton, B. Gendron and T. L. Magnanti, Variable disaggregation in network flow problems with piecewise linear costs, Oper. Res., 55 (2007), 146-157.
doi: 10.1287/opre.1060.0314.
|
| [7] |
G. B. Dantzig, Recent advances in linear programming, Management Sci., 2 (1956), 131-144.
doi: 10.1287/mnsc.2.2.131.
|
| [8] |
G. B. Dantzig, S. Johnson and W. White, A linear programming approach to the chemical equilibrium problem, Management Sci., 5 (1958), 38-43.
doi: 10.1287/mnsc.5.1.38.
|
| [9] |
G. Davulis, The method for solving a piecewise-linear multicommodity flow problem, Informatica, 12 (2001), 199-220.
|
| [10] |
M. Ehrgott,
Multicriteria Optimization, 2nd edition, Springer, Berlin, 2005.
|
| [11] |
M. Ehrgott, J. Puerto and A. M. Rodríguez-Chía, Primal-dual simplex method for multiobjective linear programming, J. Optim. Theory Appl., 134 (2007), 483-497.
doi: 10.1007/s10957-007-9232-y.
|
| [12] |
A. Eusébio, J. R. Figueira and M. Ehrgott, A primal-dual simplex algorithm for bi-objective network flow problems, 4OR-Q J. Oper. Res., 7 (2009), 255-273.
doi: 10.1007/s10288-008-0087-3.
|
| [13] |
R. Fourer, A simplex algorithm for piecewise-linear programming. Ⅰ. Derivation and proof, Math. Programming, 33 (1985), 204-233.
doi: 10.1007/BF01582246.
|
| [14] |
R. Fourer, A simplex algorithm for piecewise-linear programming. Ⅱ. Finiteness, feasibility and degeneracy, Math. Programming, Ser. A, 41 (1988), 281-315.
doi: 10.1007/BF01580769.
|
| [15] |
R. Fourer, A simplex algorithm for piecewise-linear programming. Ⅲ. Computational analysis and applications, Math. Programming, Ser. A, 53 (1992), 213-235.
doi: 10.1007/BF01585703.
|
| [16] |
R. Fourer and R. E. Marsten, Solving piecewise-linear programs: Experiments with a simplex approach, ORSA J. Comput., 4 (1992), 16-31.
doi: 10.1287/ijoc.4.1.16.
|
| [17] |
F. Güder and F. J. Nourie, A dual simplex algorithm for piecewise-linear programming, J. Oper. Research Soc., 47 (1996), 583-590.
|
| [18] |
S. Kameshwaran and Y. Narahari, Nonconvex piecewise linear knapsack problems, Eur. J. Oper. Res., 192 (2009), 56-68.
doi: 10.1016/j.ejor.2007.08.044.
|
| [19] |
A. B. Keha, I. R. de Farias Jr. and G. L. Nemhauser, A branch-and-cut algorithm without binary variables for nonconvex piecewise linear optimization, Oper. Res., 54 (2006), 847-858.
doi: 10.1287/opre.1060.0277.
|
| [20] |
D. Kim and P. M. Pardalos, Dynamic slope scaling and trust interval techniques for solving concave piecewise linear network flow problems, Networks, 35 (2000), 216-222.
doi: 10.1002/(SICI)1097-0037(200005)35:3<216::AID-NET5>3.0.CO;2-E.
|
| [21] |
S. Nickel and M. M. Wiecek, Multiple objective programming with piecewise linear functions, J. Multi-Crit. Decis. Anal., 8 (1999), 322-332.
doi: 10.1002/1099-1360(199911)8:6<322::AID-MCDA260>3.0.CO;2-5.
|
| [22] |
P. Pandey and A. P. Punnen, A simplex algorithm for piecewise-linear fractional programming problems, Eur. J. Oper. Res., 178 (2007), 343-358.
doi: 10.1016/j.ejor.2006.02.021.
|
| [23] |
S. Rebennack, A. Nahapetyan and P. M. Pardalos, Bilinear modeling solution approach for fixed charge network flow problems, Optim. Lett., 3 (2009), 347-355.
doi: 10.1007/s11590-009-0114-0.
|
| [24] |
J. Sun and K. H. Tsai, A simplex method and its implementation for network piecewise linear programming, Asia-Pacific J. Oper. Res., 14 (1997), 55-68.
|
| [25] |
R. J. B. Wets, Solving stochastic programs with simple recourse, Stochastics, 10 (1983), 219-242.
doi: 10.1080/17442508308833274.
|
| [26] |
P. L. Yu and M. Zeleny, The set of all nondominated solutions in linear cases and a multicriteria simplex method, J. Math. Anal. Appl., 49 (1975), 430-468.
doi: 10.1016/0022-247X(75)90189-4.
|