\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems

The authors are supported by the Natural Science Foundation of China (11471159,11571169), the Natural Science Foundation of Jiangsu Province (BK20141409), the Education Department Foundation of Anhui Province(KJ2016A651,2014jyxm161), and the Science and Technology Foundation of the Department of Education of Hubei Province (D20152701).
Abstract / Introduction Full Text(HTML) Figure(6) / Table(1) Related Papers Cited by
  • In this paper, a scaled method that combines the conjugate gradient with moving asymptotes is presented for solving the large-scaled nonlinear unconstrained optimization problem. A diagonal matrix is obtained by the moving asymptote technique, and a scaled gradient is determined by multiplying the gradient with the diagonal matrix. The search direction is either a scaled conjugate gradient direction or a negative scaled gradient direction under different conditions. This direction is sufficient descent if the step size satisfies the strong Wolfe condition. A global convergence analysis of this method is also provided. The numerical results show that the scaled method is efficient for solving some large-scaled nonlinear problems.

    Mathematics Subject Classification: Primary: 65K05; Secondary: 90C30, 49M37.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  CPU time performance profiles in a log2 scale (n = 102)

    Figure 2.  Iterations performance profiles in a log2 scale (n = 102)

    Figure 3.  CPU time performance profiles in a log2 scale (n = 103)

    Figure 4.  Iterations performance profiles in a log2 scale (n = 103)

    Figure 5.  CPU time performance profiles in a log2 scale (n = 104)

    Figure 6.  Iterations performance profiles in a log2 scale (n = 104)

    Table 1.  Test functions

    No. Function Name No. Function Name
    1 ARWHEAD 17 Ext quadratic penalty QP2
    2 COSINE 18 Ext quadratic exponential EP1
    3 EDENSCH 19 Ext Tridiagonal 2
    4 EG2 20 Ext DENSCHNF
    5 ENGVAL1 21 HIMMELBG
    6 GENROSE 22 HIMMELH
    7 Ext Freudenstein & Roth 23 TOINTGSS
    8 Raydan 2 24 Extended DENSCHNB
    9 Ext Tridiagonal 1 25 LIARWHD
    10 Ext TET 26 Extended Trigonometric
    11 Diagonal 5 27 Extended Penalty
    12 Diagonal 2 28 Extended BD1
    13 Ext Maratos 29 Perturbed Quadratic
    14 Ext Cliff 30 Raydan 1
    15 Perturbed quadratic diagonal 31 Diagonal 4
    16 Ext quadratic penalty QP1 32 QUARTC
     | Show Table
    DownLoad: CSV
  • [1] M. Al-BaaliY. Narushima and H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Computational Optimization and Applications, 60 (2015), 89-110.  doi: 10.1007/s10589-014-9662-z.
    [2] N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10 (2008), 147-161. 
    [3] Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.  doi: 10.1137/S1052623497318992.
    [4] Y. Dai and C. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM Journal on Optimization, 23 (2013), 296-320.  doi: 10.1137/100813026.
    [5] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.  doi: 10.1007/s101070100263.
    [6] R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154.  doi: 10.1093/comjnl/7.2.149.
    [7] N. I. M. GouldD. Orban and P. L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.  doi: 10.1145/962437.962438.
    [8] W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.  doi: 10.1137/030601880.
    [9] W. Hager and H. Zhang, The limited memory conjugate gradient method, SIAM Journal on Optimization, 23 (2013), 2150-2168.  doi: 10.1137/120898097.
    [10] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49 (1952), 409-436.  doi: 10.6028/jres.049.044.
    [11] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd edition, Springer-Verlag, New York, 2008.
    [12] W. NakamuraY. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization, Journal of Industrial and Management Optimization, 9 (2013), 595-619.  doi: 10.3934/jimo.2013.9.595.
    [13] Y. NarushimaH. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.  doi: 10.1137/080743573.
    [14] Q. Ni, A globally convergent method of moving asymptotes with trust region technique, Optimization methods and software, 18 (2003), 283-297.  doi: 10.1080/1055678031000118491.
    [15] E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, Revue française d'informatique et de recherche opérationnelle, série rouge, 3 (1969), 35-43. 
    [16] B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112.  doi: 10.1016/0041-5553(69)90035-4.
    [17] K. Svanberg, The method of moving asymptotes—a new method for structural optimization, International Journal for Numerical Methods in Engineering, 24 (2987), 359-373.  doi: 10.1002/nme.1620240207.
    [18] H. Wang and Q. Ni, A new method of moving asymptotes for large-scale unconstrained optimization, Applied Mathematics and Computaiton, 203 (2008), 62-71.  doi: 10.1016/j.amc.2008.03.035.
    [19] W. Zhou and Y. Zhou, On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization, Journal of Industrial and Management Optimization, 9 (2013), 893-899.  doi: 10.3934/jimo.2013.9.893.
  • 加载中

Figures(6)

Tables(1)

SHARE

Article Metrics

HTML views(2889) PDF downloads(2711) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return