[1]
|
M. Al-Baali, Y. Narushima and H. Yabe, A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization, Computational Optimization and Applications, 60 (2015), 89-110.
doi: 10.1007/s10589-014-9662-z.
|
[2]
|
N. Andrei, An unconstrained optimization test functions collection, Advanced Modeling and Optimization, 10 (2008), 147-161.
|
[3]
|
Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[4]
|
Y. Dai and C. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM Journal on Optimization, 23 (2013), 296-320.
doi: 10.1137/100813026.
|
[5]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[6]
|
R. Fletcher and C. M. Reeves, Function minimization by conjugate gradients, The Computer Journal, 7 (1964), 149-154.
doi: 10.1093/comjnl/7.2.149.
|
[7]
|
N. I. M. Gould, D. Orban and P. L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.
doi: 10.1145/962437.962438.
|
[8]
|
W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880.
|
[9]
|
W. Hager and H. Zhang, The limited memory conjugate gradient method, SIAM Journal on Optimization, 23 (2013), 2150-2168.
doi: 10.1137/120898097.
|
[10]
|
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[11]
|
D. Luenberger and Y. Ye,
Linear and Nonlinear Programming, 3rd edition, Springer-Verlag, New York, 2008.
|
[12]
|
W. Nakamura, Y. Narushima and H. Yabe, Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization, Journal of Industrial and Management Optimization, 9 (2013), 595-619.
doi: 10.3934/jimo.2013.9.595.
|
[13]
|
Y. Narushima, H. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.
doi: 10.1137/080743573.
|
[14]
|
Q. Ni, A globally convergent method of moving asymptotes with trust region technique, Optimization methods and software, 18 (2003), 283-297.
doi: 10.1080/1055678031000118491.
|
[15]
|
E. Polak and G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, Revue française d'informatique et de recherche opérationnelle, série rouge, 3 (1969), 35-43.
|
[16]
|
B. T. Polyak, The conjugate gradient method in extremal problems, USSR Computational Mathematics and Mathematical Physics, 9 (1969), 94-112.
doi: 10.1016/0041-5553(69)90035-4.
|
[17]
|
K. Svanberg, The method of moving asymptotes—a new method for structural optimization, International Journal for Numerical Methods in Engineering, 24 (2987), 359-373.
doi: 10.1002/nme.1620240207.
|
[18]
|
H. Wang and Q. Ni, A new method of moving asymptotes for large-scale unconstrained optimization, Applied Mathematics and Computaiton, 203 (2008), 62-71.
doi: 10.1016/j.amc.2008.03.035.
|
[19]
|
W. Zhou and Y. Zhou, On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization, Journal of Industrial and Management Optimization, 9 (2013), 893-899.
doi: 10.3934/jimo.2013.9.893.
|