[1]
|
L. T. H. An and P. D. Tao, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, 133 (2005), 23-46.
doi: 10.1007/s10479-004-5022-1.
|
[2]
|
L. T. H. An, H. M. Le, V. V. Nguyen and P. D. Tao, A DC programming approach for feature selection in support vector machines learning, Advances in Data Analysis and Classification, 2 (2008), 259-278.
doi: 10.1007/s11634-008-0030-7.
|
[3]
|
A. Asuncion and D. J. Newman, UCI machine learning repository, School of Information and Computer Sciences, University of California Irvine, 2007, http://www.ics.uci.edu/~mlearn/MLRepository.html.
|
[4]
|
K. Bennett and A. Demiriz, Semi-supervised support vector machines, In Advances in Neural
Information Processing Systems, MIT Press, Cambridge, 12 (1998), 368–374.
|
[5]
|
W. Changzhi, L. Chaojie and L. Qiang, A DC programming approach for sensor network localization with uncertainties in anchor positions, Journal of Industrial and Management Optimization, 10 (2014), 817-826.
doi: 10.3934/jimo.2014.10.817.
|
[6]
|
O. Chapelle, V. Sindhwani and S. Keerthi, Optimization Techniques for Semi-Supervised Support Vector Machines, Journal of Machine Learning Research, 9 (2008), 203-233.
|
[7]
|
T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters, 27 (2006), 861-874.
|
[8]
|
G. Fung and O. Mangasarian, Semi-Supervised Support Vector Machines for Unlabeled Data Classification, Optimization methods & software, 15 (2001), 29-44.
|
[9]
|
W. Guan and A. Gray, Sparse high-dimensional fractional-norm support vector machine via DC programming, Computational Statistics and Data Analysis, 67 (2013), 136-148.
doi: 10.1016/j.csda.2013.01.020.
|
[10]
|
W. J. Hu, F. L. Chung and L. SH. Wang, The Maximum Vector-Angular Margin Classifier and its fast training on large datasets using a core vector machine, Neural Networks, 27 (2012), 60-73.
|
[11]
|
P. D. Tao and L. T. T. An, Convex analysis approaches to DC programming: Theory, algorithms and applications, Acta Mathematica, 22 (1997), 287-367.
|
[12]
|
B. Scholkopf, A. J. Smola, R. C. Williamson and P. L. Bartlett, New support vector algorithms, Neural Computation, 12 (2000), 1207-1245.
|
[13]
|
X. Xiao, J. Gu, L. Zhang and S. Zhang, A sequential convex program method to DC program with joint chance constraints, Journal of Industrial and Management Optimization, 8 (2012), 733-747.
doi: 10.3934/jimo.2012.8.733.
|
[14]
|
L. M. Yang and L. SH. Wang, A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm, Knowledge-Based Systems, 41 (2013), 1-7.
|
[15]
|
YALMIP Toolbox.
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php.
|
[16]
|
Y. B. Yuan, Canonical duality solution for alternating support vector machine, Journal of Industrial and Management Optimization, 8 (2012), 611-621.
doi: 10.3934/jimo.2012.8.611.
|
[17]
|
V. N. Vapnik,
Statistical Learning Theory, New York: Wiley. 1998.
|