
-
Previous Article
A class of descent four–term extension of the Dai–Liao conjugate gradient method based on the scaled memoryless BFGS update
- JIMO Home
- This Issue
-
Next Article
Parametric solutions to the regulator-conjugate matrix equations
Distribution-free solutions to the extended multi-period newsboy problem
1. | School of Management, Guangdong University of Technology, Guangzhou 510520, China |
2. | School of Business Administration, Guangdong University of Finance & Economics, Guangzhou 510320, China |
This paper concerns the distribution-free, multi-period newsboy problem in which the newsboy has to decide the order quantity of the newspaper in the subsequent period without knowing the distribution of the demand. The Weak Aggregating Algorithm (WAA) developed in learning and prediction with expert advices makes decision only based on historical information and provides theoretical guarantee for the decision-making method. Based on the advantage of WAA and stationary expert advices, this paper continues providing distribution-free methods for the extended multi-period newsboy problems in which the shortage cost and the integral order quantities are considered. In particular, we provide an alternative proof for the theoretical result which guarantees the cumulative gain our proposed method achieves is as large as that of the best stationary expert advice. Numerical examples are provided to illustrate the effectiveness of our proposed methods.
References:
[1] |
S. Al-Binali,
A risk-reward framework for the competitive analysis of financial games, Algorithmica, 25 (1999), 99-115.
doi: 10.1007/PL00009285. |
[2] |
H. K. Alfares and H. H. Elmorra,
The distribution-free newsboy problem: extension to the shortage penalty case, International Journal of Production Economics, 93-94 (2005), 465-477.
doi: 10.1016/j.ijpe.2004.06.043. |
[3] |
O. Besbes and A. Muharremoglu, On implications of demand censoring in the newsvendor problem, Management Science, 59 (2013), 1407-1424. Google Scholar |
[4] |
A. Burnetas and C. Smith,
Adaptive ordering and pricing for perishable products, Operations Research, 48 (2000), 436-443.
doi: 10.1287/opre.48.3.436.12437. |
[5] |
N. Cesa-Bianchi and G. Lugosi,
Prediction, Learning, and Games, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511546921. |
[6] |
L. L. Ding, X. M. Liu and Y. F. Xu,
Competitive risk management for online Bahncard problem, Journal of Industrial and Management Optimization, 6 (2010), 1-14.
doi: 10.3934/jimo.2010.6.1. |
[7] |
G. Gallego and I. Moon,
The distribution free newsboy problem: review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834.
doi: 10.2307/2583894. |
[8] |
W. T. Huh, R. Levi, P. Rusmevichientong and J. B. Orlin,
Adaptive data-driven inventory control with censored demand based on Kaplan-Meier estimator, Operations Research, 59 (2011), 929-941.
doi: 10.1287/opre.1100.0906. |
[9] |
W. T. Huh and P. Rusmevichientong,
A non-parametric asymptotic analysis of inventory planning with censored demand, Mathematics of Operations Research, 34 (2009), 103-123.
doi: 10.1287/moor.1080.0355. |
[10] |
Y. Kalnishkan and M. V. Vyugin,
The weak aggregating algorithm and weak mixability, Journal of Computer and System Sciences, 74 (2008), 1228-1244.
doi: 10.1016/j.jcss.2007.08.003. |
[11] |
M. Keisuke,
The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188.
doi: 10.1016/j.ejor.2004.08.030. |
[12] |
S. Kunnumkal and H. Topaloglu,
Using stochastic approximation methods to compute optimal base-stock levels in inventory inventory control problems, Operations Research, 56 (2008), 646-664.
doi: 10.1287/opre.1070.0477. |
[13] |
S. Kunnumkal and H. Topaloglu,
A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions, Mathematical Methods of Operations Research, 70 (2009), 477-504.
doi: 10.1007/s00186-008-0278-x. |
[14] |
T. Levina, Y. Levin, J. McGill, M. Nediak and V. Vovk,
Weak aggregating algorithm for the distribution-free perishable inventory problem, Operations Research Letters, 38 (2010), 516-521.
doi: 10.1016/j.orl.2010.09.006. |
[15] |
X. Lu, J. Song and K. Zhu,
Analysis of perishable-inventory systems with censored demand data, Operations Research, 56 (2008), 1034-1038.
doi: 10.1287/opre.1080.0553. |
[16] |
I. Moon and S. Choi, Distribution free newsboy problem with balking, Journal of the Operational Research Society, 46 (1995), 537-542. Google Scholar |
[17] |
I. Moon and S. Choi,
Distribution free procedures for make-to-order (MTO), make-in-advance (MIA), and composite policies, International Journal of Production Economics, 48 (1997), 21-28.
doi: 10.1016/S0925-5273(96)00026-6. |
[18] |
I. Moon and E. A. Silver, The multi-item newsvendor problem with a budget constraint and fixed ordering costs, Journal of the Operational Research Society, 51 (2000), 602-608. Google Scholar |
[19] |
G. R. Murray and E. A. Silver,
A Bayesian analysis of the style goods inventory problem, Management Science, 12 (1996), 785-797.
doi: 10.1287/mnsc.12.11.785. |
[20] |
H. Scarf, A min-max solution of an inventory problem, in: K. Arrow, S. Karlin, H. Scarf (Eds.), Studies in The Mathematical Theory of Inventory and Production, Stanford University Press, California, (1958), 201–209. Google Scholar |
[21] |
H. Scarf,
Bayes solution of the statistical inventory problem, Annals of Mathematical Statistics, 30 (1959), 490-508.
doi: 10.1214/aoms/1177706264. |
[22] |
G. L. Vairaktarakis, Robust multi-item newsboy models with abudget constraint, International Journal of Production Economics, 66 (2000), 213-226. Google Scholar |
[23] |
Y. Zhang, V. Vovk and W. G Zhang,
Probability-free solutions to the non-stationary newsvendor problem, Annals of Operation Research, 223 (2014), 433-449.
doi: 10.1007/s10479-014-1620-8. |
show all references
References:
[1] |
S. Al-Binali,
A risk-reward framework for the competitive analysis of financial games, Algorithmica, 25 (1999), 99-115.
doi: 10.1007/PL00009285. |
[2] |
H. K. Alfares and H. H. Elmorra,
The distribution-free newsboy problem: extension to the shortage penalty case, International Journal of Production Economics, 93-94 (2005), 465-477.
doi: 10.1016/j.ijpe.2004.06.043. |
[3] |
O. Besbes and A. Muharremoglu, On implications of demand censoring in the newsvendor problem, Management Science, 59 (2013), 1407-1424. Google Scholar |
[4] |
A. Burnetas and C. Smith,
Adaptive ordering and pricing for perishable products, Operations Research, 48 (2000), 436-443.
doi: 10.1287/opre.48.3.436.12437. |
[5] |
N. Cesa-Bianchi and G. Lugosi,
Prediction, Learning, and Games, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511546921. |
[6] |
L. L. Ding, X. M. Liu and Y. F. Xu,
Competitive risk management for online Bahncard problem, Journal of Industrial and Management Optimization, 6 (2010), 1-14.
doi: 10.3934/jimo.2010.6.1. |
[7] |
G. Gallego and I. Moon,
The distribution free newsboy problem: review and extensions, Journal of the Operational Research Society, 44 (1993), 825-834.
doi: 10.2307/2583894. |
[8] |
W. T. Huh, R. Levi, P. Rusmevichientong and J. B. Orlin,
Adaptive data-driven inventory control with censored demand based on Kaplan-Meier estimator, Operations Research, 59 (2011), 929-941.
doi: 10.1287/opre.1100.0906. |
[9] |
W. T. Huh and P. Rusmevichientong,
A non-parametric asymptotic analysis of inventory planning with censored demand, Mathematics of Operations Research, 34 (2009), 103-123.
doi: 10.1287/moor.1080.0355. |
[10] |
Y. Kalnishkan and M. V. Vyugin,
The weak aggregating algorithm and weak mixability, Journal of Computer and System Sciences, 74 (2008), 1228-1244.
doi: 10.1016/j.jcss.2007.08.003. |
[11] |
M. Keisuke,
The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188.
doi: 10.1016/j.ejor.2004.08.030. |
[12] |
S. Kunnumkal and H. Topaloglu,
Using stochastic approximation methods to compute optimal base-stock levels in inventory inventory control problems, Operations Research, 56 (2008), 646-664.
doi: 10.1287/opre.1070.0477. |
[13] |
S. Kunnumkal and H. Topaloglu,
A stochastic approximation method for the single-leg revenue management problem with discrete demand distributions, Mathematical Methods of Operations Research, 70 (2009), 477-504.
doi: 10.1007/s00186-008-0278-x. |
[14] |
T. Levina, Y. Levin, J. McGill, M. Nediak and V. Vovk,
Weak aggregating algorithm for the distribution-free perishable inventory problem, Operations Research Letters, 38 (2010), 516-521.
doi: 10.1016/j.orl.2010.09.006. |
[15] |
X. Lu, J. Song and K. Zhu,
Analysis of perishable-inventory systems with censored demand data, Operations Research, 56 (2008), 1034-1038.
doi: 10.1287/opre.1080.0553. |
[16] |
I. Moon and S. Choi, Distribution free newsboy problem with balking, Journal of the Operational Research Society, 46 (1995), 537-542. Google Scholar |
[17] |
I. Moon and S. Choi,
Distribution free procedures for make-to-order (MTO), make-in-advance (MIA), and composite policies, International Journal of Production Economics, 48 (1997), 21-28.
doi: 10.1016/S0925-5273(96)00026-6. |
[18] |
I. Moon and E. A. Silver, The multi-item newsvendor problem with a budget constraint and fixed ordering costs, Journal of the Operational Research Society, 51 (2000), 602-608. Google Scholar |
[19] |
G. R. Murray and E. A. Silver,
A Bayesian analysis of the style goods inventory problem, Management Science, 12 (1996), 785-797.
doi: 10.1287/mnsc.12.11.785. |
[20] |
H. Scarf, A min-max solution of an inventory problem, in: K. Arrow, S. Karlin, H. Scarf (Eds.), Studies in The Mathematical Theory of Inventory and Production, Stanford University Press, California, (1958), 201–209. Google Scholar |
[21] |
H. Scarf,
Bayes solution of the statistical inventory problem, Annals of Mathematical Statistics, 30 (1959), 490-508.
doi: 10.1214/aoms/1177706264. |
[22] |
G. L. Vairaktarakis, Robust multi-item newsboy models with abudget constraint, International Journal of Production Economics, 66 (2000), 213-226. Google Scholar |
[23] |
Y. Zhang, V. Vovk and W. G Zhang,
Probability-free solutions to the non-stationary newsvendor problem, Annals of Operation Research, 223 (2014), 433-449.
doi: 10.1007/s10479-014-1620-8. |





100 | 200 | 300 | 400 | |
DAS | 3864/3721 | 6843/6211 | 9978/8928 | 12672/11339 |
1520/-1966 | 3040/-3218 | 4560/-4568 | 6080/-5582 | |
2635/325 | 5093/1089 | 7678/1952 | 10187/3033 | |
3497/2223 | 6489/4375 | 9531/6507 | 12396/8700 | |
3955/3493 | 6923/6167 | 10068/9018 | 12733/11459 | |
3780/3780 | 6269/6269 | 8936/8936 | 10995/10995 | |
Ratios | 0.977/0.984 | 0.988/0.986 | 0.991/0.990 | 0.995/0.989 |
100 | 200 | 300 | 400 | |
DAS | 3864/3721 | 6843/6211 | 9978/8928 | 12672/11339 |
1520/-1966 | 3040/-3218 | 4560/-4568 | 6080/-5582 | |
2635/325 | 5093/1089 | 7678/1952 | 10187/3033 | |
3497/2223 | 6489/4375 | 9531/6507 | 12396/8700 | |
3955/3493 | 6923/6167 | 10068/9018 | 12733/11459 | |
3780/3780 | 6269/6269 | 8936/8936 | 10995/10995 | |
Ratios | 0.977/0.984 | 0.988/0.986 | 0.991/0.990 | 0.995/0.989 |
TN | 10 | 20 | 30 | 40 |
AVE | 0.9861/0.9917 | 0.9821/0.9904 | 0.9802/0.9905 | 0.9800/0.9910 |
STD | 0.0152/0.0041 | 0.0135/0.0035 | 0.0147/0.0037 | 0.0148/0.0034 |
TN | 10 | 20 | 30 | 40 |
AVE | 0.9861/0.9917 | 0.9821/0.9904 | 0.9802/0.9905 | 0.9800/0.9910 |
STD | 0.0152/0.0041 | 0.0135/0.0035 | 0.0147/0.0037 | 0.0148/0.0034 |
trial | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
DAS | 235 | 110 | 164 | 185 | 153 | 227 | 158 | 188 | 196 | 150 |
ANS | 241 | 106 | 159 | 180 | 151 | 211 | 153 | 183 | 192 | 147 |
trial | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
DAS | 235 | 110 | 164 | 185 | 153 | 227 | 158 | 188 | 196 | 150 |
ANS | 241 | 106 | 159 | 180 | 151 | 211 | 153 | 183 | 192 | 147 |
[1] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
[2] |
Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066 |
[3] |
Yang Zhang. A free boundary problem of the cancer invasion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021092 |
[4] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[5] |
Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063 |
[6] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[7] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[8] |
Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 |
[9] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[10] |
Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021037 |
[11] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[12] |
Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021016 |
[13] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[14] |
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 |
[15] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[16] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[17] |
Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3709-3724. doi: 10.3934/dcds.2021013 |
[18] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[19] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[20] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]