Hybridizing the three–term conjugate gradient method proposed by Zhang et al. and the nonlinear conjugate gradient method proposed by Dai and Liao based on the scaled memoryless BFGS update, a one–parameter class of four–term conjugate gradient methods is proposed. It is shown that the suggested class of conjugate gradient methods possesses the sufficient descent property, without convexity assumption on the objective function. A brief global convergence analysis is made for uniformly convex objective functions. Results of numerical comparisons are reported. They demonstrate efficiency of a method of the proposed class in the sense of the Dolan–Moré performance profile.
Citation: |
[1] | N. Andrei, Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization, European J. Oper. Res., 204 (2010), 410-420. doi: 10.1016/j.ejor.2009.11.030. |
[2] | S. Babaie–Kafaki, On the sufficient descent condition of the Hager–Zhang conjugate gradient methods, 4OR, 12 (2014), 285-292. doi: 10.1007/s10288-014-0255-6. |
[3] | S. Babaie–Kafaki and R. Ghanbari, A descent family of Dai–Liao conjugate gradient methods, Optim. Methods Softw., 29 (2014), 583-591. doi: 10.1080/10556788.2013.833199. |
[4] | S. Babaie–Kafaki and R. Ghanbari, Two modified three–term conjugate gradient methods with sufficient descent property, Optim. Lett., 8 (2014), 2285-2297. doi: 10.1007/s11590-014-0736-8. |
[5] | S. Babaie–Kafaki and R. Ghanbari, A hybridization of the Hestenes–Stiefel and Dai–Yuan conjugate gradient methods based on a least–squares approach, Optim. Methods Softw., 30 (2015), 673-681. doi: 10.1080/10556788.2014.966825. |
[6] | S. Babaie–Kafaki, R. Ghanbari and N. Mahdavi–Amiri, Two new conjugate gradient methods based on modified secant equations, J. Comput. Appl. Math., 234 (2010), 1374-1386. doi: 10.1016/j.cam.2010.01.052. |
[7] | J. Barzilai and J. Borwein, Two–point stepsize gradient methods, IMA J. Numer. Anal., 8 (1988), 141-148. doi: 10.1093/imanum/8.1.141. |
[8] | C. Broyden, The convergence of a class of double–rank minimization algorithms. Ⅱ. The new algorithm, J. Inst. Math. Appl., 6 (1970), 222-231. doi: 10.1093/imamat/6.3.222. |
[9] | Y. Dai and C. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search, SIAM J. Optim., 23 (2013), 296-320. doi: 10.1137/100813026. |
[10] | Y. Dai and L. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43 (2001), 87-101. doi: 10.1007/s002450010019. |
[11] | E. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213. doi: 10.1007/s101070100263. |
[12] | R. Fletcher, A new approach to variable metric algorithms, Comput. J., 13 (1970), 317-322. doi: 10.1093/comjnl/13.3.317. |
[13] | J. Ford and I. Moghrabi, Multi–step quasi–Newton methods for optimization, J. Comput. Appl. Math., 50 (1994), 305-323. doi: 10.1016/0377-0427(94)90309-3. |
[14] | J. Ford, Y. Narushima and H. Yabe, Multi–step nonlinear conjugate gradient methods for unconstrained minimization, Comput. Optim. Appl., 40 (2008), 191-216. doi: 10.1007/s10589-007-9087-z. |
[15] | D. Goldfarb, A family of variable metric methods derived by variational means, Math. Comp., 24 (1970), 23-26. doi: 10.1090/S0025-5718-1970-0258249-6. |
[16] | N. Gould, D. Orban and P. Toint, CUTEr: a constrained and unconstrained testing environment, revisited, ACM Trans. Math. Softw., 29 (2003), 353-372. doi: 10.1145/962437.962438. |
[17] | W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170-192. doi: 10.1137/030601880. |
[18] | W. Hager and H. Zhang, Algorithm 851: CG_Descent, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Softw., 32 (2006), 113-137. doi: 10.1145/1132973.1132979. |
[19] | W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35-58. |
[20] | M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49 (1952), 409-436. doi: 10.6028/jres.049.044. |
[21] | D. Li and M. Fukushima, A modified BFGS method and its global convergence in nonconvex minimization, J. Comput. Appl. Math., 129 (2001), 15-35. doi: 10.1016/S0377-0427(00)00540-9. |
[22] | G. Li, C. Tang and Z. Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained optimization, J. Comput. Appl. Math., 202 (2007), 523-539. doi: 10.1016/j.cam.2006.03.005. |
[23] | D. Liu and J. Nocedal, On the limited memory BFGS method for large–scale optimization, Math. Program., 45 (1989), 503-528. doi: 10.1007/BF01589116. |
[24] | S. Oren, Self–scaling variable metric (SSVM) algorithms. Ⅱ. Implementation and experiments, Management Sci., 20 (1974), 863-874. |
[25] | S. Oren and D. Luenberger, Self–scaling variable metric (SSVM) algorithms. Ⅰ. Criteria and sufficient conditions for scaling a class of algorithms, Management Sci., 20 (1973/74), 845-862. |
[26] | S. Oren and E. Spedicato, Optimal conditioning of self–scaling variable metric algorithms, Math. Program., 10 (1976), 70-90. doi: 10.1007/BF01580654. |
[27] | D. Shanno, Conditioning of quasi–Newton methods for function minimization, Math. Comp., 24 (1970), 647-656. doi: 10.1090/S0025-5718-1970-0274029-X. |
[28] | K. Sugiki, Y. Narushima and H. Yabe, Globally convergent three–term conjugate gradient methods that use secant conditions and generate descent search directions for unconstrained optimization, J. Optim. Theory Appl., 153 (2012), 733-757. doi: 10.1007/s10957-011-9960-x. |
[29] | W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. |
[30] | Z. Wei, G. Li and L. Qi, New quasi–Newton methods for unconstrained optimization problems, Appl. Math. Comput., 175 (2006), 1156-1188. doi: 10.1016/j.amc.2005.08.027. |
[31] | H. Yabe and M. Takano, Global convergence properties of nonlinear conjugate gradient methods with modified secant condition, Comput. Optim. Appl., 28 (2004), 203-225. doi: 10.1023/B:COAP.0000026885.81997.88. |
[32] | Y. Yuan, A modified BFGS algorithm for unconstrained optimization, IMA J. Numer. Anal., 11 (1991), 325-332. doi: 10.1093/imanum/11.3.325. |
[33] | J. Zhang, N. Deng and L. Chen, New quasi–Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl., 102 (1999), 147-167. doi: 10.1023/A:1021898630001. |
[34] | L. Zhang, W. Zhou and D. Li, Some descent three–term conjugate gradient methods and their global convergence, Optim. Methods Softw., 22 (2007), 697-711. doi: 10.1080/10556780701223293. |
[35] | W. Zhou and L. Zhang, A nonlinear conjugate gradient method based on the MBFGS secant condition, Optim. Methods Softw., 21 (2006), 707-714. doi: 10.1080/10556780500137041. |