[1]
|
F. Alizadeh, J.-P. A. Haeberly and M. L. Overton, Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results, SIAM Journal on Optimization, 8 (1998), 746-768.
doi: 10.1137/S1052623496304700.
|
[2]
|
F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization, SIAM Journal on Optimization, 5 (1995), 13-51.
doi: 10.1137/0805002.
|
[3]
|
R. Bhatia,
Matrix Analysis, Graduate Texts in Mathematics, Vol. 169, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8.
|
[4]
|
F. H. Clarke,
Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, Vol. 5, Society for Industry and Applied Mathematics (SIAM), Philadelphia, 1990.
doi: 10.1137/1.9781611971309.
|
[5]
|
F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski,
Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, Vol. 178, Springer-Verlag, New York, 1998.
doi: 10.1007/b97650.
|
[6]
|
J. Cullum, W. E. Donath and P. Wolfe, The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices, Mathematical Programming Study, 3 (1975), 35-55.
doi: 10.1007/BFb0120698.
|
[7]
|
K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. Ⅰ., Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 652-655.
doi: 10.1073/pnas.35.11.652.
|
[8]
|
S. Friedland, J. Nocedal and M. L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM Journal on Numerical Analysis, 24 (1987), 634-667.
doi: 10.1137/0724043.
|
[9]
|
M. Huang, L. P. Pang and Z. Q. Xia, The space decomposition theory for a class of eigenvalue optimizations, Computational Optimization and Applications, 58 (2014), 423-454.
doi: 10.1007/s10589-013-9624-x.
|
[10]
|
C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM Journal on Optimization, 10 (2000), 673-696.
doi: 10.1137/S1052623497328987.
|
[11]
|
J. -B. Hiriart-Urruty and C. Lemaréchal,
Convex Analysis and Minimization Algorithms Ⅰ-Ⅱ, Grundlehren der mathematischen Wissenschaften, Vols 305-306, Springer-Verlag, Berlin, 1993.
doi: 10.1007/978-3-662-02796-7.
|
[12]
|
J.-B. Hiriart-Urruty and D. Ye, Sensitivity analysis of all eigenvalues of a symmetric matrix, Numerische Mathematik, 70 (1995), 45-72.
doi: 10.1007/s002110050109.
|
[13]
|
F. Jarre, An interior-point method for minimizing the maximum eigenvalue of a linear combination of matrices, SIAM Journal on Control and Optimization, 31 (1993), 1360-1377.
doi: 10.1137/0331064.
|
[14]
|
M. Kojima, M. Shida and S. Shindoh, Local convergence of predictor-corrector infeasible-interior-point algorithms for SDPs and SDLCPs, Mathematical Programming, 80 (1998), 129-160.
doi: 10.1007/BF01581723.
|
[15]
|
K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming, 27 (1983), 320-341.
doi: 10.1007/BF02591907.
|
[16]
|
K. C. Kiwiel, A linearization algorithm for nonsmooth minimization, Mathematics of Operations Research, 10 (1985), 185-194.
doi: 10.1287/moor.10.2.185.
|
[17]
|
K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming, 46 (1990), 105-122.
doi: 10.1007/BF01585731.
|
[18]
|
C. Lemaréchal, An extension of davidon methods to nondifferentiable problems, Mathematical Programming Study, 3 (2009), 95-109.
doi: 10.1007/BFb0120700.
|
[19]
|
A. S. Lewis and M. L. Overton, Eigenvalue optimization, Acta Numerica, 5 (1996), 149-190.
doi: 10.1017/S0962492900002646.
|
[20]
|
R. Mifflin, An algorithm for constrained optimization with semismooth functions, Mathematics of Operations Research, 2 (1977), 191-207.
doi: 10.1287/moor.2.2.191.
|
[21]
|
Y. Nesterov, Interior-point methods: An old and new approach to nonlinear programming, Mathematical Programming, 79 (1997), 285-297.
doi: 10.1007/BF02614321.
|
[22]
|
Y. Nesterov and A. Nemirovskii,
A General Approach to Polynomial-Time Algorithms Design for Convex Programming, Technical report, Centr. Econ. & Math. Inst., USSR Academy of Sciences, Moscow, USSR, 1988.
|
[23]
|
Y. Nesterov and A. Nemirovskii,
Interior-Point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied and Numerical Mathematics, Vol. 13, Philadelphia, 1994.
doi: 10.1137/1.9781611970791.
|
[24]
|
F. Oustry, The ${\mathcal U}$-Lagrangian of the maximum eigenvalue function, SIAM Journal on Optimization, 9 (1999), 526-549.
doi: 10.1137/S1052623496311776.
|
[25]
|
M. L. Overton, On minimizing the maximum eigenvalue of a symmetric matrix, SIAM Journal on Matrix Analysis and Applications, 9 (1988), 256-268.
doi: 10.1137/0609021.
|
[26]
|
M. L. Overton and R. S. Womersley, Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices, Mathematical Programming, 62 (1993), 321-357.
doi: 10.1007/BF01585173.
|
[27]
|
G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues, Mathematics of Operations Research, 23 (1998), 339-358.
doi: 10.1287/moor.23.2.339.
|
[28]
|
E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Review, 29 (1987), 21-89.
doi: 10.1137/1029002.
|
[29]
|
E. Polak and Y. Wardi, Nondifferentiable optimization algorithm for designing control systems having singular value inequalities, Automatica, 18 (1982), 267-283.
doi: 10.1016/0005-1098(82)90087-5.
|
[30]
|
S. B. Robinson, On the second eigenvalue for nonhomogeneous quasi-linear operators, SIAM Journal on Mathematical Analysis, 35 (2004), 1241-1249.
doi: 10.1137/S0036141003426008.
|
[31]
|
R. T. Rockafellar,
Convex Analysis, Princeton University Press, NJ, 1997.
|
[32]
|
A. Shapiro and M. K. H. Fan, On eigenvalue optimization, SIAM Journal on Optimization, 5 (1995), 552-569.
doi: 10.1137/0805028.
|
[33]
|
A. Shapiro, First and second order analysis of nonlinear semidefinite programs, Mathematical Programming, 77 (1997), 301-320.
doi: 10.1007/BF02614439.
|
[34]
|
J. Sun, S. Boyd, L. Xiao and P. Diaconis, The fastest mixing markov process on a graph and a connection to a maximum variance unfolding problem, SIAM Review, 48 (2006), 681-699.
doi: 10.1137/S0036144504443821.
|
[35]
|
M. Torki, First-and second-order epi-differentiability in eigenvalue optimization, Journal of Mathematical Analysis and Applications, 234 (1999), 391-416.
doi: 10.1006/jmaa.1999.6320.
|
[36]
|
M. Torki, Second-order directional derivatives of all eigenvalues of a symmetric matrix, Nonlinear Analysis. Theory, Methods & Applications, 46 (2001), 1133-1150.
doi: 10.1016/S0362-546X(00)00165-6.
|
[37]
|
L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Review, 38 (1996), 49-95.
doi: 10.1137/1038003.
|
[38]
|
J. Vlček and L. Lukšan, Globally convergent variable metric method for nonconvex nondifferentiable unconstrained minimization, Journal of Optimization Theory and Applications, 111 (2001), 407-430.
doi: 10.1023/A:1011990503369.
|
[39]
|
P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable functions, Mathematical Programming Study, 3 (1975), 145-173.
doi: 10.1007/BFb0120703.
|