April  2017, 13(2): 737-755. doi: 10.3934/jimo.2016044

Optimal reinsurance and investment strategy with two piece utility function

1. 

School of Statistics, East China Normal University, Shanghai, 200241, China

2. 

Departments of Statistics of Actuarial Science, The University of Hong Kong, Hong Kong, China

* Corresponding author: Lv Chen

Received  November 2015 Published  August 2016

Fund Project: The first author is supported by Research Grants Council of the Hong Kong Special Administrative Region (project No. HKU 705313P), National Natural Science Foundation of China (grant number 11231005,11571113), Program of Shanghai Subject Chief Scientist (grant number 14XD1401600).

This paper studies optimal reinsurance and investment strategies that maximize expected utility of the terminal wealth for an insurer in a stochastic market. The insurer's preference is represented by a two-piece utility function which can be regarded as a generalization of traditional concave utility functions. We employ martingale approach and convex optimization method to transform the dynamic maximization problem into an equivalent static optimization problem. By solving the optimization problem, we derive explicit expressions of the optimal reinsurance and investment strategy and the optimal wealth process.

Citation: Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044
References:
[1]

M. Alias, Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.  doi: 10.2307/1907921.  Google Scholar

[2]

D. E. Bell, Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.  Google Scholar

[3]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.  doi: 10.2307/2118511.  Google Scholar

[4]

A, B. BerkelaarR. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987.   Google Scholar

[5]

C. Bernard and M. Ghossoub, Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.  doi: 10.1007/s11579-009-0021-2.  Google Scholar

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[7]

K. C. ChuengW. F. Chong and S. C. P. Yam, The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.  doi: 10.1016/j.insmatheco.2015.04.004.  Google Scholar

[8]

K. C. ChuengW. F. ChongR. J. Elliot and S. C. P. Yam, Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.  doi: 10.1017/asb.2015.12.  Google Scholar

[9]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.  Google Scholar

[10]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[11]

C. Hipp and M. Plum, Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.  doi: 10.1007/s007800200095.  Google Scholar

[12]

H. Jin and X. Y. Zhou, Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.  doi: 10.1111/j.1467-9965.2008.00339.x.  Google Scholar

[13]

D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291.   Google Scholar

[14]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[15]

C. S. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.  Google Scholar

[16]

G. Loomes and R. Sugden, Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.  doi: 10.2307/2297651.  Google Scholar

[17]

L. L. Lopes and G. C. Oden, The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.  doi: 10.1006/jmps.1999.1259.  Google Scholar

[18]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.  Google Scholar

[19]

H. Mi and S. G. Zhang, Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12.   Google Scholar

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.  doi: 10.1080/034612301750077338.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.  doi: 10.2307/2676187.  Google Scholar

[22]

K. C. J. SungS. C. P. YamS. P. Yung and J. H. Zhou, Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.  doi: 10.1016/j.insmatheco.2011.04.008.  Google Scholar

[23]

A. Tsanakas and E. Desli, Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.  doi: 10.1017/S1357321700004414.  Google Scholar

[24]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.  doi: 10.1007/978-3-319-20451-2_24.  Google Scholar

[25]

L. XuR. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.  doi: 10.3934/jimo.2008.4.801.  Google Scholar

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[27]

D. YaoH. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[28]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

show all references

References:
[1]

M. Alias, Le comportement de l'homme rationel devant le risque: Critique des postulats et axioms de l'ecole americaine, Econometrica, 21 (1953), 503-546.  doi: 10.2307/1907921.  Google Scholar

[2]

D. E. Bell, Disappointment in decision making under uncertainty, Oper. Res., 33 (1985), 1-27.  doi: 10.1287/opre.33.1.1.  Google Scholar

[3]

S. Benartzi and R. H. Thaler, Myopic loss aversion and the equity premium puzzle, Quart. J. Econ., 110 (1995), 73-92.  doi: 10.2307/2118511.  Google Scholar

[4]

A, B. BerkelaarR. Kouwenberg and T. Post, Optimal Portfolio Choice under Loss Aversion, Review of Economics and Statistics, 86 (2004), 973-987.   Google Scholar

[5]

C. Bernard and M. Ghossoub, Static portfolio choice under cumulative prospect theory, Financ. Econ., 2 (2010), 277-306.  doi: 10.1007/s11579-009-0021-2.  Google Scholar

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Math. of Oper. Res., 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[7]

K. C. ChuengW. F. Chong and S. C. P. Yam, The optimal insurance under disappointment theories, Insurance Math. Econom., 64 (2015), 77-90.  doi: 10.1016/j.insmatheco.2015.04.004.  Google Scholar

[8]

K. C. ChuengW. F. ChongR. J. Elliot and S. C. P. Yam, Disappointment aversion premium principle, Astin Bulletin, 45 (2015), 679-702.  doi: 10.1017/asb.2015.12.  Google Scholar

[9]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance Math. Econom., 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.  Google Scholar

[10]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance Math. Econom., 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[11]

C. Hipp and M. Plum, Optimal investment for investors with state dependent income, and for insurers, Finance Stoch., 7 (2003), 299-321.  doi: 10.1007/s007800200095.  Google Scholar

[12]

H. Jin and X. Y. Zhou, Behavior portfolio selection in continuous time, Math. Finance, 18 (2008), 385-426.  doi: 10.1111/j.1467-9965.2008.00339.x.  Google Scholar

[13]

D. Kahneman and A. Tversky, Prospect Theory-Analysis of Decision under risk, Econometrica, 47 (1979), 263-291.   Google Scholar

[14]

I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[15]

C. S. Liu and H. Yang, Optimal investment for an insurer to minimize its probability of ruin, N. Am. Actuar. J., 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.  Google Scholar

[16]

G. Loomes and R. Sugden, Disappointment and dynamic consistency in choice under uncertainty, Rev. Econom. Stud., 53 (1986), 271-282.  doi: 10.2307/2297651.  Google Scholar

[17]

L. L. Lopes and G. C. Oden, The role of aspiration level in risky choice: A comparison of cumulative prospect theory and SP/A theory, J. Math. Psych, 43 (1999), 286-313.  doi: 10.1006/jmps.1999.1259.  Google Scholar

[18]

R. Mehra and E. C. Prescott, The equity premium: A puzzle, J. Monetary Econ, 15 (1985), 145-161.  doi: 10.1016/0304-3932(85)90061-3.  Google Scholar

[19]

H. Mi and S. G. Zhang, Continuous time portfolio selection with loss aversion in an incomplete market, Oper. Res Trans, 16 (2012), 1-12.   Google Scholar

[20]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scand. Actuar. J., 1 (2001), 55-68.  doi: 10.1080/034612301750077338.  Google Scholar

[21]

H. Shefrin and M. Statman, Behavioral portfolio theory, J. Financ. Quant. Anal., 35 (2000), 127-151.  doi: 10.2307/2676187.  Google Scholar

[22]

K. C. J. SungS. C. P. YamS. P. Yung and J. H. Zhou, Behavioral optimal insurance, Insurance Math. Econom., 49 (2011), 418-428.  doi: 10.1016/j.insmatheco.2011.04.008.  Google Scholar

[23]

A. Tsanakas and E. Desli, Risk measures and theories of choice, British Acturial Journal, 9 (2003), 959-991.  doi: 10.1017/S1357321700004414.  Google Scholar

[24]

A. Tversky and D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, Chapter: Readings in Formal Epistemology, 1 (2016), 493-519.  doi: 10.1007/978-3-319-20451-2_24.  Google Scholar

[25]

L. XuR. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, J. ind. manag. optim., 4 (2008), 801-815.  doi: 10.3934/jimo.2008.4.801.  Google Scholar

[26]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance Math. Econom., 37 (1995), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[27]

D. YaoH. Yang and R. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, J. ind. manag. optim., 6 (2010), 761-777.  doi: 10.3934/jimo.2010.6.761.  Google Scholar

[28]

X. Zhang and T. K. Siu, On optimal proportional reinsurance and investment in a markovian regime-switching economy, Acta Mathematica Sinica, English Series, 28 (2012), 67-82.  doi: 10.1007/s10114-012-9761-7.  Google Scholar

[1]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[2]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[3]

Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021020

[4]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[5]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[6]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[7]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[8]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[9]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[12]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[13]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[14]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[15]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[16]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[17]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[18]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[19]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[20]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (89)
  • HTML views (383)
  • Cited by (1)

Other articles
by authors

[Back to Top]