In this paper, following the framework of robust optimization, we consider robust optimal solutions for a fractional optimization problem in the face of data uncertainty both in the objective and constraints. To this end, by using the properties of the subdifferential sum formulae, we first introduce some robust basic subdifferential constraint qualifications, and then obtain some completely characterizations of the robust optimal solutions of this uncertain fractional optimization problem. We show that our results encompass as special cases some optimization problems considered in the recent literature. Moreover, as applications, the proposed approach is applied to investigate weakly robust efficient solutions for multi-objective fractional optimization problems in the face of data uncertainty both in the objective and constraints.
Citation: |
[1] |
A. Beck and A. Ben-Tal, Duality in robust optimization: Primal worst equals dual best, Oper. Res. Lett., 37 (2009), 1-6.
doi: 10.1016/j.orl.2008.09.010.![]() ![]() ![]() |
[2] |
A. Ben-Tal, L. E. Ghaoui and A. Nemirovski,
Robust Optimization, Princeton Series in Applied Mathematics, 2009.
doi: 10.1515/9781400831050.![]() ![]() ![]() |
[3] |
D. Bertsimas, D. S. Brown and C. Caramanis, Theory and applications of robust optimization, SIAM Rev., 53 (2011), 464-501.
doi: 10.1137/080734510.![]() ![]() ![]() |
[4] |
J. R. Birge and F. Louveaux,
Introduction to Stochastic Programming, Springer, New York, 1997.
![]() ![]() |
[5] |
R. I. Boţ,
Conjugate Duality in Convex Optimization, Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-04900-2.![]() ![]() ![]() |
[6] |
R. I. Boţ, S. M. Grad and G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Anal., 69 (2008), 323-336.
doi: 10.1016/j.na.2007.05.021.![]() ![]() ![]() |
[7] |
R. I. Boţ, I. B. Hodrea and G. Wanka, Farkas-type results for fractional programming problems, Nonlinear Anal., 67 (2007), 1690-1703.
doi: 10.1016/j.na.2006.07.041.![]() ![]() ![]() |
[8] |
K. Deb and H. Gupta, Introducing robustness in multi-objective optimization, Evol. Comput., 14 (2006), 463-494.
doi: 10.1162/evco.2006.14.4.463.![]() ![]() |
[9] |
B. L. Gorissen, Robust fractional programming, J. Optim. Theory Appl., 166 (2015), 508-528.
doi: 10.1007/s10957-014-0633-4.![]() ![]() ![]() |
[10] |
X. L. Guo and S. J. Li, Optimality conditions for vector optimization problems with difference of convex maps, J. Optim. Theory Appl., 162 (2014), 821-844.
doi: 10.1007/s10957-013-0327-3.![]() ![]() ![]() |
[11] |
A. Jayswal, A. K. Prasad and I. Ahmad, On minimax fractional programming problems involving generalized ($H_p$, r)-invex functions, J. Ind. Manag. Optim., 10 (2014), 1001-1018.
doi: 10.3934/jimo.2014.10.1001.![]() ![]() ![]() |
[12] |
V. Jeyakumar, G. M. Lee and G. Y. Li, Characterizing robust solution sets of convex programs under data uncertainty, J. Optim. Theory Appl., 164 (2015), 407-435.
doi: 10.1007/s10957-014-0564-0.![]() ![]() ![]() |
[13] |
V. Jeyakumar and G. Y. Li, Robust duality for fractional programming problems with constraint-wise data uncertainty, J. Optim. Theory Appl., 151 (2011), 292-303.
doi: 10.1007/s10957-011-9896-1.![]() ![]() ![]() |
[14] |
V. Jeyakumar, G. Y. Li and S. Srisatkunarajah, Strong duality for robust minimax fractional programming problems, Eur. J. Oper. Res., 228 (2013), 331-336.
doi: 10.1016/j.ejor.2013.02.015.![]() ![]() ![]() |
[15] |
D. Kuroiwa and G. M. Lee, On robust convex multiobjective optimization, J. Nonlinear Convex Anal., 15 (2014), 1125-1136.
![]() ![]() |
[16] |
J. H. Lee and G. M. Lee, On $\varepsilon$-solutions for convex optimization problems with uncertainty data, Positivity, 16 (2012), 509-526.
doi: 10.1007/s11117-012-0186-4.![]() ![]() ![]() |
[17] |
Z. A. Liang, H. X. Huang and P. M. Pardalos, Optimality conditions and duality for a class of nonlinear fractional programming problems, J. Optim. Theory Appl., 110 (2001), 611-619.
doi: 10.1023/A:1017540412396.![]() ![]() ![]() |
[18] |
J. Y. Lin, H. J. Chen and R. L. Sheu, Augmented Lagrange primal-dual approach for generalized fractional programming problems, J. Ind. Manag. Optim., 9 (2013), 723-741.
doi: 10.3934/jimo.2013.9.723.![]() ![]() ![]() |
[19] |
J. C. Liu and K. Yokoyama, $\varepsilon$-optimality and duality for fractional programming, Taiwan. J. Math., 3 (1999), 311-322.
![]() ![]() |
[20] |
O. L. Mangasarian,
Nonlinear Programming, McGraw-Hill Inc, New York, 1969.
![]() ![]() |
[21] |
S. Schaible, Bibliography in fractional programming, Zeitschrift für Oper. Res., 26 (1982), 211-241.
![]() ![]() |
[22] |
S. Schaible and T. Ibaraki, Fractional programming, Eur. J. Oper. Res., 12 (1983), 325-338.
doi: 10.1016/0377-2217(83)90153-4.![]() ![]() ![]() |
[23] |
A. Shapiro, D. Dentcheva and A. Ruszczynski,
Lectures on Stochastic Programming: Modeling and Theory, SIAM, Philadelphia, 2009.
doi: 10.1137/1.9780898718751.![]() ![]() ![]() |
[24] |
I. M. Stancu-Minasian, A seventh bibliography of fractional programming, Adv. Model. Optim., 15 (2013), 309-386.
![]() |
[25] |
X. K. Sun and Y. Chai, On robust duality for fractional programming with uncertainty data, Positivity, 18 (2014), 9-28.
doi: 10.1007/s11117-013-0227-7.![]() ![]() ![]() |
[26] |
X. K. Sun, Y. Chai and J. Zeng, Farkas-type results for constrained fractional programming with DC functions, Optim. Lett., 8 (2014), 2299-2313.
doi: 10.1007/s11590-014-0737-7.![]() ![]() ![]() |
[27] |
X. K. Sun, X. J. Long and Y. Chai, Sequential optimality conditions for fractional optimization with applications to vector optimization, J. Optim. Theory Appl., 164 (2015), 479-499.
doi: 10.1007/s10957-014-0578-7.![]() ![]() ![]() |
[28] |
H. J. Wang and C. Z. Cheng, Duality and Farkas-type results for DC fractional programming with DC constraints, Math. Comput. Modelling, 53 (2011), 1026-1034.
doi: 10.1016/j.mcm.2010.11.059.![]() ![]() ![]() |
[29] |
X. M. Yang, K. L. Teo and X. Q. Yang, Symmetric duality for a class of nonlinear fractional programming problems, J. Math. Anal. Appl., 271 (2002), 7-15.
doi: 10.1016/S0022-247X(02)00042-2.![]() ![]() ![]() |
[30] |
X. M. Yang, X. Q. Yang and K. L. Teo, Duality and saddle-point type optimality for generalized nonlinear fractional programming, J. Math. Anal. Appl., 289 (2004), 100-109.
doi: 10.1016/j.jmaa.2003.08.029.![]() ![]() ![]() |
[31] |
H. Yu and H. M. Liu, Robust multiple objective game theory, J. Optim. Theory Appl., 159 (2013), 272-280.
doi: 10.1007/s10957-012-0234-z.![]() ![]() ![]() |
[32] |
X. H. Zhang and C. Z. Cheng, Some Farkas-type results for fractional programming with DC functions, Nonlinear Anal. Real World Appl., 10 (2009), 1679-1690.
doi: 10.1016/j.nonrwa.2008.02.006.![]() ![]() ![]() |