
-
Previous Article
An optimal algorithm for the obstacle neutralization problem
- JIMO Home
- This Issue
-
Next Article
Some characterizations of robust optimal solutions for uncertain fractional optimization and applications
Robust design of sensor fusion problem in discrete time
1. | LinJiang Middle School, KaiZhou District, Chongqing, China |
2. | College of Mathematical Sciences, Chongqing Normal University, Chongqing, China |
In this paper, we consider a robust sensor scheduling problem which estimates the state of an uncertain process based on measurements obtained by a given set of noisy sensors, where the measurements of sensors are subject to external interference uncertainties. We formulate this problem into a minimax optimal control problem, which is equivalent to a semi-infinite programming problem with a dynamic system. A discretization method is used to solve this problem, where the computation is very large scale in general. We propose an approximation method to reduce the computational complexity. For illustration, two numerical examples are solved.
References:
[1] |
T. Abburi and S. Narasimhan,
Optimal sensor scheduling in batch processes using convex relaxations and tchebycheff systems theory, IEEE Transactions on Automatic Control, 59 (2014), 2978-2983.
doi: 10.1109/TAC.2014.2351692. |
[2] |
Z. L. Deng, Y. Gao, L. Mao, Y. Li and G. Hao,
New approach to information fusion steady-state Kalman filtering, Automatica, 41 (2005), 1695-1707.
doi: 10.1016/j.automatica.2005.04.020. |
[3] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[4] |
Z. G. Feng, K. L. Teo, N. U. Ahmed, Y. Zhao and W. Y. Yan,
Optimal fusion of sensor data for Kalman filtering, Discrete and ContinuousDynamical Systems, 14 (2006), 483-503.
|
[5] |
Z. G. Feng, K. L. Teo, N. U. Ahmed, Y. Zhao and W. Y. Yan,
Optimal fusion of sensor data for discrete Kalman filtering, Dynamic Systems and Applications, 16 (2007), 393-406.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[7] |
F. N. Grigor'ev and N. A. Kuznetsov,
Control of the observation process in continuous systems, Problems of Control and Information Theory, 6 (1977), 181-201.
|
[8] |
F. N. Grigor'ev, About the control of information processing in discrete automatic systems, Automation and Remote Control, 43 (1982). Google Scholar |
[9] |
H. Kushner,
On the optimum timing of observations for linear control systems with unknown initial state, IEEE Transactions on Automatic Control, 9 (1964), 144-150.
|
[10] |
H. W. J. Lee, K. L. Teo and L. S. Jennings,
Control parametrization enhancing techniques for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.
doi: 10.1016/S0005-1098(99)00050-3. |
[11] |
H. W. J. Lee, K. L. Teo and A. E. B. Lim,
Sensor scheduling in continuous time, Automatica, 37 (2001), 2017-2023.
doi: 10.1016/S0005-1098(01)00159-5. |
[12] |
Y. Li, L. W. Krakow, E. K. Chong and K. N. Groom,
Approximate stochastic dynamic programming for sensor scheduling to track multiple targets, Digital Signal Processing, 19 (2009), 978-989.
doi: 10.1016/j.dsp.2007.05.004. |
[13] |
J. L. Liu, Y. Sun, J. Yang, W. Y. Liu and W. M. Chen,
Optimal sensor scheduling for hybrid estimation, Journal of Central South University, 20 (2013), 2186-2194.
doi: 10.1007/s11771-013-1723-4. |
[14] |
B. M. Miller,
Observation control for discrete-continuous stochastic systems, IEEE Transactions on Automatic Control, 45 (2000), 993-998.
doi: 10.1109/9.855571. |
[15] |
V. Malyavej, I. R. Manchester and A. V. Savkin,
Precision missile guidance using radar/multiple-video sensor fusion via communication channels with bit-rate constraints, Automatica, 42 (2006), 763-769.
doi: 10.1016/j.automatica.2005.12.024. |
[16] |
A. S. Matveev and A. V. Savki,
Optimal state estimation in networked systems with asynchronous communication channels and switched sensors, Journal of optimization theory and applications, 128 (2006), 139-165.
doi: 10.1007/s10957-005-7562-1. |
[17] |
A. V. Savkin, R. J. Evans and E. Skafidas,
The problem of optimal robust sensor scheduling, Systems Control Lett., 43 (2001), 149-157.
doi: 10.1016/S0167-6911(01)00086-X. |
[18] |
S. L. Sun,
Distributed optimal component fusion weighted by scalars for fixed-lag Kalman smoother, Automatica, 41 (2005), 2153-2159.
doi: 10.1016/j.automatica.2005.06.014. |
[19] |
K. L. Teo, C. Goh and K. Wong,
A Unified Computational Approach to Optimal Control Problems, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[20] |
C. Z. Wu, K. L. Teo and X. Y. Wang,
Minimax optimal control of linear system with input-dependent uncertainty, Journal of the Franklin Institute, 351 (2014), 2742-2754.
doi: 10.1016/j.jfranklin.2014.01.012. |
[21] |
C. Z. Wu, K. L. Teo and S. Y. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[22] |
M. Yavuz and D. Jeffcoat, An analysis and solution of the sensor scheduling problem, In
Advances in Cooperative Control and Optimization, Springer Berlin Heidelberg, 369 (2007),
167–177.
doi: 10.1007/978-3-540-74356-9_10. |
show all references
References:
[1] |
T. Abburi and S. Narasimhan,
Optimal sensor scheduling in batch processes using convex relaxations and tchebycheff systems theory, IEEE Transactions on Automatic Control, 59 (2014), 2978-2983.
doi: 10.1109/TAC.2014.2351692. |
[2] |
Z. L. Deng, Y. Gao, L. Mao, Y. Li and G. Hao,
New approach to information fusion steady-state Kalman filtering, Automatica, 41 (2005), 1695-1707.
doi: 10.1016/j.automatica.2005.04.020. |
[3] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[4] |
Z. G. Feng, K. L. Teo, N. U. Ahmed, Y. Zhao and W. Y. Yan,
Optimal fusion of sensor data for Kalman filtering, Discrete and ContinuousDynamical Systems, 14 (2006), 483-503.
|
[5] |
Z. G. Feng, K. L. Teo, N. U. Ahmed, Y. Zhao and W. Y. Yan,
Optimal fusion of sensor data for discrete Kalman filtering, Dynamic Systems and Applications, 16 (2007), 393-406.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[7] |
F. N. Grigor'ev and N. A. Kuznetsov,
Control of the observation process in continuous systems, Problems of Control and Information Theory, 6 (1977), 181-201.
|
[8] |
F. N. Grigor'ev, About the control of information processing in discrete automatic systems, Automation and Remote Control, 43 (1982). Google Scholar |
[9] |
H. Kushner,
On the optimum timing of observations for linear control systems with unknown initial state, IEEE Transactions on Automatic Control, 9 (1964), 144-150.
|
[10] |
H. W. J. Lee, K. L. Teo and L. S. Jennings,
Control parametrization enhancing techniques for optimal discrete-valued control problems, Automatica, 35 (1999), 1401-1407.
doi: 10.1016/S0005-1098(99)00050-3. |
[11] |
H. W. J. Lee, K. L. Teo and A. E. B. Lim,
Sensor scheduling in continuous time, Automatica, 37 (2001), 2017-2023.
doi: 10.1016/S0005-1098(01)00159-5. |
[12] |
Y. Li, L. W. Krakow, E. K. Chong and K. N. Groom,
Approximate stochastic dynamic programming for sensor scheduling to track multiple targets, Digital Signal Processing, 19 (2009), 978-989.
doi: 10.1016/j.dsp.2007.05.004. |
[13] |
J. L. Liu, Y. Sun, J. Yang, W. Y. Liu and W. M. Chen,
Optimal sensor scheduling for hybrid estimation, Journal of Central South University, 20 (2013), 2186-2194.
doi: 10.1007/s11771-013-1723-4. |
[14] |
B. M. Miller,
Observation control for discrete-continuous stochastic systems, IEEE Transactions on Automatic Control, 45 (2000), 993-998.
doi: 10.1109/9.855571. |
[15] |
V. Malyavej, I. R. Manchester and A. V. Savkin,
Precision missile guidance using radar/multiple-video sensor fusion via communication channels with bit-rate constraints, Automatica, 42 (2006), 763-769.
doi: 10.1016/j.automatica.2005.12.024. |
[16] |
A. S. Matveev and A. V. Savki,
Optimal state estimation in networked systems with asynchronous communication channels and switched sensors, Journal of optimization theory and applications, 128 (2006), 139-165.
doi: 10.1007/s10957-005-7562-1. |
[17] |
A. V. Savkin, R. J. Evans and E. Skafidas,
The problem of optimal robust sensor scheduling, Systems Control Lett., 43 (2001), 149-157.
doi: 10.1016/S0167-6911(01)00086-X. |
[18] |
S. L. Sun,
Distributed optimal component fusion weighted by scalars for fixed-lag Kalman smoother, Automatica, 41 (2005), 2153-2159.
doi: 10.1016/j.automatica.2005.06.014. |
[19] |
K. L. Teo, C. Goh and K. Wong,
A Unified Computational Approach to Optimal Control Problems, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. |
[20] |
C. Z. Wu, K. L. Teo and X. Y. Wang,
Minimax optimal control of linear system with input-dependent uncertainty, Journal of the Franklin Institute, 351 (2014), 2742-2754.
doi: 10.1016/j.jfranklin.2014.01.012. |
[21] |
C. Z. Wu, K. L. Teo and S. Y. Wu,
Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica, 49 (2013), 1809-1815.
doi: 10.1016/j.automatica.2013.02.052. |
[22] |
M. Yavuz and D. Jeffcoat, An analysis and solution of the sensor scheduling problem, In
Advances in Cooperative Control and Optimization, Springer Berlin Heidelberg, 369 (2007),
167–177.
doi: 10.1007/978-3-540-74356-9_10. |



[1] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[2] |
Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055 |
[3] |
Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021022 |
[4] |
Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041 |
[5] |
Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409 |
[6] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[7] |
Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021063 |
[8] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[9] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[10] |
Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058 |
[11] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[12] |
Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204 |
[13] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[14] |
Hao Li, Honglin Chen, Matt Haberland, Andrea L. Bertozzi, P. Jeffrey Brantingham. PDEs on graphs for semi-supervised learning applied to first-person activity recognition in body-worn video. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021039 |
[15] |
Linyao Ge, Baoxiang Huang, Weibo Wei, Zhenkuan Pan. Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model. Mathematical Foundations of Computing, 2021 doi: 10.3934/mfc.2021003 |
[16] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[17] |
Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881 |
[18] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[19] |
Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051 |
[20] |
Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021052 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]