
-
Previous Article
Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent
- JIMO Home
- This Issue
-
Next Article
An optimal algorithm for the obstacle neutralization problem
A memory gradient method based on the nonmonotone technique
Department of Applied Mathematics, Hainan University, Haikou 570228, China |
In this paper, we present a new nonmonotone memory gradient algorithm for unconstrained optimization problems. An attractive property of the proposed method is that the search direction always provides sufficient descent step at each iteration. This property is independent of the line search used. Under mild assumptions, the global and local convergence results of the proposed algorithm are established respectively. Numerical results are also reported to show that the proposed method is suitable to solve large-scale optimization problems and is more stable than other similar methods in practical computation.
References:
[1] |
N. Andrei,
An unconstrained optimization test functions, Advanced Modelling and Optimization, 10 (2008), 147-161.
|
[2] |
J. Barzilai and J. M. Borwein,
Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141. |
[3] |
W. Y. Cheng and Q. F. Liu,
Sufficient descent nonlinear conjugate gradient methods with conjugacy condition, Numerical Algorithms, 53 (2010), 113-131.
doi: 10.1007/s11075-009-9318-8. |
[4] |
Y. H. Dai,
On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.
doi: 10.1023/A:1013653923062. |
[5] |
Y. H. Dai and Y. X. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[6] |
Y. H. Dai and Y. X. Yuan,
Nonlinear Conjugate Gradient Methods (in chinese), Shanghai Scientific and Technical Publishers, Shanghai, 2000. |
[7] |
N. Y. Deng, Y. Xiao and F. J. Zhou,
Nonmonotone trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.
doi: 10.1007/BF00939608. |
[8] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Mathematical Programming, Serial A, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[9] |
J. C. Gilbert and J. Nocedal,
Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.
doi: 10.1137/0802003. |
[10] |
N. I. M. Gould, D. Orban and Ph. L. Toint,
CUTEr: a constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.
doi: 10.1145/962437.962438. |
[11] |
L. Grippo, F. Lampariello and S. Lucidi,
A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.
doi: 10.1137/0723046. |
[12] |
N. Z. Gu and J. T. Mo,
Incorporating nonmonotone strategies into the trust region method for unconstrained optimization, Computers and Mathematics with Applications, 55 (2008), 2158-2172.
doi: 10.1016/j.camwa.2007.08.038. |
[13] |
W. W. Hager and H. C. Zhang,
A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880. |
[14] |
W. W. Hager and H. C. Zhang,
A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 35-58.
|
[15] |
H. Iiduka and Y. Narushima,
Conjugate gradient methods using value of objective function for unconstrained optimization, Optimization Letters, 6 (2012), 941-955.
doi: 10.1007/s11590-011-0324-0. |
[16] |
Y. Ji, Y. J. Li, K. C. Zhang and X. L. Zhang,
A new nonmonotone trust region method for conic model for solving unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2010), 1746-1754.
doi: 10.1016/j.cam.2009.09.011. |
[17] |
J. T. Mo, K. C. Zhang and Z. X. Wei,
A nonmonotone trust region method for unconstrained optimization, Applied Mathematics and Computation, 171 (2005), 371-384.
doi: 10.1016/j.amc.2005.01.048. |
[18] |
Y. Narushima and H. Yabe,
Global convergence of a memory gradient method for unconstrained optimization, Computational Optimization and Applications, 35 (2006), 325-346.
doi: 10.1007/s10589-006-8719-z. |
[19] |
Y. Narushima, H. Yabe and J. A. Ford,
A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.
doi: 10.1137/080743573. |
[20] |
J. Nocedal and S. J. Wright,
Numerical Optimization, Springer, New York, 1999.
doi: 10.1007/b98874. |
[21] |
Y. G. Ou and G. S. Wang,
A new supermemory gradient method for unconstrained optimization problems, Optimization Letters, 6 (2012), 975-992.
doi: 10.1007/s11590-011-0328-9. |
[22] |
Y. G. Ou and Q. Zhou,
A nonmonotonic trust region algorithm for a class of semi-infinite minimax programming, Applied Mathematics and Computation, 215 (2009), 474-480.
doi: 10.1016/j.amc.2009.05.009. |
[23] |
M. Raydan,
The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization, 7 (1977), 26-33.
doi: 10.1137/S1052623494266365. |
[24] |
Z. J. Shi and J. Shen,
A new supermemory gradient method with curve search rule, Applied Mathematics and Computation, 170 (2005), 1-16.
doi: 10.1016/j.amc.2004.10.063. |
[25] |
Z. J. Shi and J. Shen,
On memory gradient method with trust region for unconstrained optimization, Numerical Algorithms, 41 (2006), 173-196.
doi: 10.1007/s11075-005-9008-0. |
[26] |
Z. J. Shi, S. Q. Wang and Z. W. Xu,
The convergence of conjugate gradient method with nonmonotone line search, Applied Mathematics and Computation, 217 (2010), 1921-1932.
doi: 10.1016/j.amc.2010.06.047. |
[27] |
M. Sun and Q. G. Bai,
A new descent memory gradient method and its global convergence, Journal of System Science and Complexity, 24 (2011), 784-794.
doi: 10.1007/s11424-011-8150-0. |
[28] |
W. Y. Sun,
Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation, 156 (2004), 159-174.
doi: 10.1016/j.amc.2003.07.008. |
[29] |
W. Y. Sun and Y. X. Yuan,
Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. |
[30] |
W. Y. Sun and Q. Y. Zhou,
An unconstrained optimization method using nonmonotone second order Goldstein's linesearch, Science in China (Series A): Mathematics, 50 (2007), 1389-1400.
doi: 10.1007/s11425-007-0072-x. |
[31] |
Ph. L. Toint,
An assessment of nonmonotone line search techniques for unconstrained optimization, SIAM Journal on Scientific and Statistical Computing, 17 (1996), 725-739.
doi: 10.1137/S106482759427021X. |
[32] |
Z. S. Yu, W. G. Zhang and B. F. Wu,
Strong global convergence of an adaptive nonmonotone memory gradient method, Applied Mathematics and Computation, 185 (2007), 681-688.
doi: 10.1016/j.amc.2006.07.075. |
[33] |
H. C. Zhang and W. W. Hager,
A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.
doi: 10.1137/S1052623403428208. |
[34] |
L. Zhang, W. J. Zhou and D. H. Li,
A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006), 629-640.
doi: 10.1093/imanum/drl016. |
[35] |
Y. Zheng and Z. P. Wan,
A new variant of the memory gradient method for unconstrained optimization, Optimization Letters, 6 (2012), 1643-1655.
doi: 10.1007/s11590-011-0355-6. |
[36] |
W. J. Zhou and L. Zhang,
Global convergence of the nonmonotone MBFGS method for nonconvex unconstrained minimization, Journal of Computational and Applied Mathematics, 223 (2009), 40-47.
doi: 10.1016/j.cam.2007.12.011. |
show all references
References:
[1] |
N. Andrei,
An unconstrained optimization test functions, Advanced Modelling and Optimization, 10 (2008), 147-161.
|
[2] |
J. Barzilai and J. M. Borwein,
Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141. |
[3] |
W. Y. Cheng and Q. F. Liu,
Sufficient descent nonlinear conjugate gradient methods with conjugacy condition, Numerical Algorithms, 53 (2010), 113-131.
doi: 10.1007/s11075-009-9318-8. |
[4] |
Y. H. Dai,
On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.
doi: 10.1023/A:1013653923062. |
[5] |
Y. H. Dai and Y. X. Yuan,
A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992. |
[6] |
Y. H. Dai and Y. X. Yuan,
Nonlinear Conjugate Gradient Methods (in chinese), Shanghai Scientific and Technical Publishers, Shanghai, 2000. |
[7] |
N. Y. Deng, Y. Xiao and F. J. Zhou,
Nonmonotone trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.
doi: 10.1007/BF00939608. |
[8] |
E. D. Dolan and J. J. Moré,
Benchmarking optimization software with performance profiles, Mathematical Programming, Serial A, 91 (2002), 201-213.
doi: 10.1007/s101070100263. |
[9] |
J. C. Gilbert and J. Nocedal,
Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.
doi: 10.1137/0802003. |
[10] |
N. I. M. Gould, D. Orban and Ph. L. Toint,
CUTEr: a constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.
doi: 10.1145/962437.962438. |
[11] |
L. Grippo, F. Lampariello and S. Lucidi,
A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.
doi: 10.1137/0723046. |
[12] |
N. Z. Gu and J. T. Mo,
Incorporating nonmonotone strategies into the trust region method for unconstrained optimization, Computers and Mathematics with Applications, 55 (2008), 2158-2172.
doi: 10.1016/j.camwa.2007.08.038. |
[13] |
W. W. Hager and H. C. Zhang,
A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880. |
[14] |
W. W. Hager and H. C. Zhang,
A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 35-58.
|
[15] |
H. Iiduka and Y. Narushima,
Conjugate gradient methods using value of objective function for unconstrained optimization, Optimization Letters, 6 (2012), 941-955.
doi: 10.1007/s11590-011-0324-0. |
[16] |
Y. Ji, Y. J. Li, K. C. Zhang and X. L. Zhang,
A new nonmonotone trust region method for conic model for solving unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2010), 1746-1754.
doi: 10.1016/j.cam.2009.09.011. |
[17] |
J. T. Mo, K. C. Zhang and Z. X. Wei,
A nonmonotone trust region method for unconstrained optimization, Applied Mathematics and Computation, 171 (2005), 371-384.
doi: 10.1016/j.amc.2005.01.048. |
[18] |
Y. Narushima and H. Yabe,
Global convergence of a memory gradient method for unconstrained optimization, Computational Optimization and Applications, 35 (2006), 325-346.
doi: 10.1007/s10589-006-8719-z. |
[19] |
Y. Narushima, H. Yabe and J. A. Ford,
A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.
doi: 10.1137/080743573. |
[20] |
J. Nocedal and S. J. Wright,
Numerical Optimization, Springer, New York, 1999.
doi: 10.1007/b98874. |
[21] |
Y. G. Ou and G. S. Wang,
A new supermemory gradient method for unconstrained optimization problems, Optimization Letters, 6 (2012), 975-992.
doi: 10.1007/s11590-011-0328-9. |
[22] |
Y. G. Ou and Q. Zhou,
A nonmonotonic trust region algorithm for a class of semi-infinite minimax programming, Applied Mathematics and Computation, 215 (2009), 474-480.
doi: 10.1016/j.amc.2009.05.009. |
[23] |
M. Raydan,
The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization, 7 (1977), 26-33.
doi: 10.1137/S1052623494266365. |
[24] |
Z. J. Shi and J. Shen,
A new supermemory gradient method with curve search rule, Applied Mathematics and Computation, 170 (2005), 1-16.
doi: 10.1016/j.amc.2004.10.063. |
[25] |
Z. J. Shi and J. Shen,
On memory gradient method with trust region for unconstrained optimization, Numerical Algorithms, 41 (2006), 173-196.
doi: 10.1007/s11075-005-9008-0. |
[26] |
Z. J. Shi, S. Q. Wang and Z. W. Xu,
The convergence of conjugate gradient method with nonmonotone line search, Applied Mathematics and Computation, 217 (2010), 1921-1932.
doi: 10.1016/j.amc.2010.06.047. |
[27] |
M. Sun and Q. G. Bai,
A new descent memory gradient method and its global convergence, Journal of System Science and Complexity, 24 (2011), 784-794.
doi: 10.1007/s11424-011-8150-0. |
[28] |
W. Y. Sun,
Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation, 156 (2004), 159-174.
doi: 10.1016/j.amc.2003.07.008. |
[29] |
W. Y. Sun and Y. X. Yuan,
Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006. |
[30] |
W. Y. Sun and Q. Y. Zhou,
An unconstrained optimization method using nonmonotone second order Goldstein's linesearch, Science in China (Series A): Mathematics, 50 (2007), 1389-1400.
doi: 10.1007/s11425-007-0072-x. |
[31] |
Ph. L. Toint,
An assessment of nonmonotone line search techniques for unconstrained optimization, SIAM Journal on Scientific and Statistical Computing, 17 (1996), 725-739.
doi: 10.1137/S106482759427021X. |
[32] |
Z. S. Yu, W. G. Zhang and B. F. Wu,
Strong global convergence of an adaptive nonmonotone memory gradient method, Applied Mathematics and Computation, 185 (2007), 681-688.
doi: 10.1016/j.amc.2006.07.075. |
[33] |
H. C. Zhang and W. W. Hager,
A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.
doi: 10.1137/S1052623403428208. |
[34] |
L. Zhang, W. J. Zhou and D. H. Li,
A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006), 629-640.
doi: 10.1093/imanum/drl016. |
[35] |
Y. Zheng and Z. P. Wan,
A new variant of the memory gradient method for unconstrained optimization, Optimization Letters, 6 (2012), 1643-1655.
doi: 10.1007/s11590-011-0355-6. |
[36] |
W. J. Zhou and L. Zhang,
Global convergence of the nonmonotone MBFGS method for nonconvex unconstrained minimization, Journal of Computational and Applied Mathematics, 223 (2009), 40-47.
doi: 10.1016/j.cam.2007.12.011. |

Fun. | n | FR | PRP+ | DY | HZ | Algor.2.1 |
cpu(s) | cpu(s) | cpu(s) | cpu(s) | cpu(s) | ||
Ex.F.Roth | 104 | 4.888547 | 0.550768 | 2.957423 | 0.521059 | 1.823025 |
105 | 35.695368 | 6.393457 | 25.041071 | 5.640529 | 18.592210 | |
106 | 287.654246 | 48.039330 | 228.797928 | 46.116688 | 220.881878 | |
Ex.Trig. | 104 | 6.477725 | 0.879721 | 4.214142 | 1.521069 | 2.249725 |
105 | F | 12.156054 | 116.274122 | 74.643352 | 13.436983 | |
106 | F | 137.648005 | 209.220891 | 159.74406 | 140.003615 | |
Ex.Rosen. | 104 | 0.937497 | 0.334996 | 1.779752 | 0.269760 | 1.198996 |
105 | 3.666262 | 2.938029 | 19.050805 | 2.371920 | 12.510256 | |
106 | 76.992755 | 28.496619 | 154.785583 | 19.094775 | 100.920667 | |
Ex.W.Holst | 104 | 0.927501 | 0.902176 | 0.953671 | 0.641670 | 0.667595 |
105 | 11.200851 | 6.359390 | 5.016512 | 5.216413 | 5.085647 | |
106 | 108.520029 | 63.355358 | 53.428723 | 55.247560 | 52.571641 | |
Ex.Beale | 104 | 0.324522 | 0.275613 | 0.418340 | 0.157054 | 0.228633 |
105 | 2.474278 | 1.870461 | 2.407946 | 1.499047 | 2.405817 | |
106 | 23.457059 | 19.579839 | 26.324518 | 15.640053 | 24.912454 | |
Ex.Penalty | 104 | 0.275020 | 0.201060 | 0.208781 | 0.176900 | 0.203811 |
105 | 1.234828 | 2.239090 | 1.827919 | 1.724014 | 1.821343 | |
106 | 9.546747 | 17.71788 | 27.437794 | 14.134732 | 16.033043 | |
Per.Quad. | 104 | 3.02902 | 3.077180 | 3.040349 | 3.358025 | 46.029533 |
105 | 209.611665 | 103.424010 | 114.210432 | 108.280599 | F | |
Raydan 1 | 104 | 5.081648 | 3.277429 | 4.728205 | 3.713061 | 11.254018 |
105 | 97.715159 | 46.250008 | 127.696125 | 65.739349 | 141.324543 | |
Raydan 2 | 104 | 0.109849 | 0.087747 | 0.228718 | 0.057772 | 0.057323 |
105 | 0.833817 | 0.494746 | 1.978097 | 0.504858 | 0.533447 | |
106 | 8.214171 | 4.698048 | 16.906394 | 4.956234 | 5.812667 | |
Diag.1 | 104 | 5.789406 | 3.827681 | 6.911255 | 3.708083 | 3.538550 |
105 | F | 76.219241 | F | 70.737746 | 70.438309 | |
Diag.2 | 104 | 5.678352 | F | 5.285281 | F | 5.166993 |
105 | 154.534720 | F | 152.123264 | F | 145.797863 | |
Diag.3 | 104 | 6.181573 | 4.845072 | 6.228637 | 6.442592 | 5.311859 |
105 | 57.195661 | 52.810276 | 55.066374 | 48.976185 | 52.161715 | |
Hager | 104 | 1.380050 | 0.721078 | 1.358417 | 0.732179 | 1.320932 |
105 | 22.745343 | 11.942894 | 25.253252 | 11.895805 | 22.043234 | |
106 | F | 122.218850 | F | 156.087713 | 187.476220 | |
Gen.Trid.1 | 104 | 2.445174 | 2.512342 | 2.528296 | 2.258533 | 1.755517 |
105 | 25.293375 | 21.644389 | 25.202319 | 24.239381 | 20.201541 | |
106 | 234.095747 | 254.975842 | 204.126831 | 197.991582 | 145.845123 | |
Ex.Trid.1 | 104 | 6.224192 | 17.140057 | 1.533758 | 1.532657 | 13.182526 |
105 | 143.494302 | 244.260502 | 16.205910 | 14.276184 | 133.624706 | |
Ex.Three.Exp. | 104 | 0.199302 | 0.225054 | 0.198419 | 0.113357 | 0.142117 |
105 | 2.162488 | 2.405353 | 1.905207 | 1.265936 | 1.468474 | |
106 | 18.841829 | 21.440576 | 15.564795 | 10.447416 | 14.452928 | |
Gen.Trid.2 | 104 | 13.541982 | 3.192677 | 4.418622 | 2.970148 | 2.529354 |
105 | F | 30.674646 | F | 24.129818 | 23.986342 | |
Diag.4 | 104 | 0.094771 | 0.057988 | 0.114438 | 0.062960 | 0.093890 |
105 | 1.202458 | 0.388207 | 1.013161 | 0.202075 | 0.890367 | |
106 | 19.755904 | 3.749717 | 8.999546 | 1.906101 | 8.861827 | |
Diag.5 | 104 | 0.217310 | 0.089796 | 0.238359 | 0.141571 | 0.083229 |
105 | 1.373886 | 0.744259 | 2.028916 | 1.963680 | 0.693929 | |
106 | 13.342298 | 8.012713 | 18.812321 | 18.810192 | 6.833566 | |
Ex.Himm. | 104 | 0.611196 | 0.536196 | 0.141640 | 0.087034 | 0.132999 |
105 | 5.446782 | 5.385943 | 1.156565 | 0.724150 | 1.104406 | |
106 | 53.854410 | 53.065089 | 10.564224 | 7.176464 | 11.838695 | |
Gen.PSC1 | 104 | 2.934187 | 1.250311 | 11.817101 | 2.056868 | 28.300200 |
105 | 7.925998 | 15.507716 | 57.672689 | 14.110938 | 98.215964 | |
Ex.PSC1 | 104 | 0.114309 | 0.116711 | 0.137112 | 0.121277 | 0.120501 |
105 | 1.172552 | 0.942523 | 1.131255 | 1.341338 | 1.095562 | |
106 | 13.738276 | 10.067906 | 9.391618 | 12.643046 | 10.754309 | |
Ex.B.Diag.BD1 | 104 | 0.481994 | 0.093661 | 7.119658 | 0.153198 | 0.184555 |
105 | 4.780717 | 0.828624 | 63.779966 | 1.219591 | 1.886973 | |
106 | 45.244221 | 7.678318 | F | 13.094154 | 17.652279 | |
Ex.Maratos | 104 | 7.298980 | 0.215135 | 7.417174 | 0.400084 | 1.720770 |
105 | 72.871313 | 2.399795 | 69.118730 | 2.917748 | 15.965102 | |
106 | F | 24.968870 | F | 37.905524 | 188.771631 | |
Qua.Diag.Pert. | 104 | 20.021639 | 20.021639 | 23.190386 | 6.862350 | 20.0167895 |
Ex.Wood | 104 | 3.626209 | 0.449196 | 2.218795 | 0.481428 | 1.548869 |
105 | 30.297717 | 5.710406 | 25.452955 | 5.599862 | 24.178781 | |
106 | F | 83.358482 | F | 50.926588 | 80.176211 | |
Ex.Hiebert | 104 | 12.325250 | 0.423625 | 4.209053 | 0.505931 | 4.111580 |
105 | 61.420777 | 7.301559 | 44.310328 | 4.483430 | 43.492047 | |
106 | F | 98.625677 | F | 40.245693 | F | |
Ex.Qua.Pena.QP1 | 104 | 0.209738 | 0.131130 | 0.120703 | 0.213959 | 0.120383 |
105 | 0.931057 | 2.044439 | 0.928968 | 1.702844 | 1.680728 | |
106 | 19.710059 | 13.914293 | 5.142260 | 6.478819 | 13.674789 | |
Ex.Qua.Pena.QP2 | 104 | F | 0.368244 | 7.436318 | 0.329816 | 1.646625 |
105 | F | 3.211811 | 214.833356 | 3.229403 | 14.055916 | |
106 | F | 37.820369 | F | 31.182550 | 183.466287 | |
Qua.QF2 | 104 | 6.548727 | 6.315666 | 10.817725 | 6.994623 | 6.088805 |
FLETCBV3 | 1000 | 3.391656 | 3.208908 | 3.322490 | 9.722141 | 10.174606 |
FLETCHCR | 5000 | 17.258755 | 14.429972 | 16.787908 | 14.802347 | 10.449042 |
BDQRTIC | 104 | 83.808804 | F | 11.207452 | 9.377903 | 75.611094 |
TRIDIA | 104 | 20.207208 | 7.295958 | 13.794344 | 31.899388 | 85.858224 |
ARGLINB | 104 | 0.110820 | 0.107058 | 0.077671 | 0.068173 | 0.104807 |
105 | 0.722081 | 5.972367 | 0.946074 | 0.622368 | 0.790848 | |
106 | 7.334012 | 8.595424 | 6.361517 | 13.706507 | 5.689481 | |
ARWHEAD | 104 | 0.370001 | 0.077944 | 0.132404 | 0.090989 | 0.101133 |
105 | 1.579815 | 0.563831 | 1.544622 | 1.490355 | 1.243687 | |
106 | 5.837702 | 5.826076 | 4.586703 | 6.565910 | 5.671701 | |
NONBIA | 104 | 0.537552 | 0.102890 | 1.058223 | 0.103249 | 0.8355213 |
105 | 2.747465 | 1.337234 | 2.297892 | 2.992103 | 3.579316 | |
106 | 5.671371 | 22.742947 | 3.420499 | 6.936500 | 29.025324 | |
NONDQUAR | 104 | 0.442060 | 0.190346 | 0.158307 | 0.400302 | 0.649100 |
105 | 0.796334 | 2.503826 | 0.704471 | 1.828935 | 7.990690 | |
106 | 5.778999 | 20.906151 | 4.532799 | 17.272681 | 67.882148 | |
EG2 | 104 | 0.994080 | 0.313402 | 1.554111 | 1.337630 | 2.278667 |
105 | 7.160837 | 35.861218 | 3.615775 | 7.705992 | 10.859091 | |
106 | 43.235295 | 14.166499 | 11.586350 | 10.875278 | 50.416843 | |
DIXMAANA | 3*104 | 1.271498 | 0.762316 | 1.282368 | 0.736608 | 0.756586 |
3*105 | 11.612663 | 10.441716 | 11.562110 | 8.106027 | 7.118575 | |
3*106 | 114.760219 | 102.835981 | 125.107882 | 79.990697 | 75.923830 | |
DIXMAANB | 3*104 | 0.517920 | 0.385757 | 0.542675 | 0.537647 | 0.354278 |
3*105 | 4.638275 | 7.027447 | 9.318548 | 7.237380 | 4.477140 | |
3*106 | 82.225445 | 70.181132 | 91.019613 | 71.300978 | 43.957930 | |
DIXMAANC | 3*104 | 1.841306 | 0.543875 | 1.021507 | 0.939805 | 0.525989 |
3*105 | 16.686708 | 5.288750 | 9.791455 | 8.450863 | 5.193175 | |
3*106 | 218.619095 | 51.116314 | 98.113856 | 83.487215 | 50.139642 | |
DIXMAAND | 3*104 | 1.368970 | 0.791623 | 1.046740 | 0.935925 | 0.779501 |
3*105 | 12.372986 | 7.759932 | 10.334092 | 9.122740 | 7.526088 | |
3*106 | 120.560906 | 114.310394 | 101.432738 | 89.735515 | 83.011910 | |
DIXMAANE | 3*104 | 32.531045 | F | 34.405608 | 47.489975 | 296.898199 |
DIXMAANF | 3*104 | 35.843660 | F | 29.699410 | 62.706209 | 283.669710 |
DIXMAANG | 3*104 | 26.189755 | F | 36.058009 | 36.637936 | 293.464782 |
DIXMAANH | 3*104 | 47.59872 | F | 25.163339 | 33.846983 | 227.372189 |
DIXMAANI | 3*104 | 108.335661 | F | 139.441850 | 199.234093 | 271.533107 |
DIXMAANJ | 3*104 | 33.383252 | F | 51.195703 | 46.553180 | 207.800703 |
DIXMAANK | 3*104 | 29.999585 | F | 48.466471 | 48.972313 | 193.059611 |
DIXMAANL | 3*104 | 29.847873 | F | 46.188729 | 24.687342 | 240.765512 |
LIARWHD | 104 | 0.293234 | 0.167451 | 0.602854 | 0.194428 | 1.350052 |
105 | 23.934621 | 5.071408 | 4.936705 | 1.784358 | 20.476402 | |
106 | F | 17.774764 | 84.730927 | 20.451442 | 286.401251 | |
ENGVAL1 | 104 | 2.945172 | 1.918970 | 2.481500 | 1.763492 | 2.291727 |
105 | 25.852729 | 21.748152 | 16.928397 | 14.810821 | 14.884762 | |
106 | 165.309436 | 138.481046 | 194.509697 | 198.810671 | 190.808154 | |
EDENSCH | 104 | 0.847047 | 0.669810 | 0.844103 | 0.561064 | 0.506037 |
105 | 7.170456 | 6.061741 | 7.142879 | 5.470726 | 5.411347 | |
106 | 60.312014 | 53.737460 | 70.688592 | 46.010424 | 51.866055 | |
VARDIM | 104 | 0.208694 | 0.744199 | 0.206950 | 0.186933 | 0.177388 |
105 | 1.870152 | 1.437232 | 1.864668 | 2.162191 | 2.020566 | |
106 | 28.081020 | 23.333807 | 27.601484 | 22.723724 | 22.667290 | |
QUARTC | 104 | 105.093070 | 50.764779 | 4.301317 | 54.501230 | 0.196144 |
105 | F | F | 63.741145 | F | 3.083412 | |
106 | F | F | F | F | 50.399742 | |
SINQUAD | 5000 | 31.929046 | 49.651847 | 131.459433 | 29.357854 | 119.515009 |
DENSCHNB | 104 | 0.053052 | 0.039400 | 0.044617 | 0.042022 | 0.039368 |
105 | 0.331962 | 0.373278 | 0.470038 | 0.411125 | 0.381222 | |
106 | 3.100415 | 3.535380 | 5.128739 | 4.312925 | 3.585630 | |
DENSCHNF | 104 | 0.099564 | 0.084990 | 0.105827 | 0.120146 | 0.111866 |
105 | 0.904616 | 0.758068 | 0.936884 | 1.111403 | 1.071840 | |
106 | 9.215575 | 8.414838 | 9.944450 | 11.481290 | 10.755364 | |
COSINE | 104 | 0.172759 | 0.482814 | 0.222049 | 0.133286 | 0.170851 |
105 | 1.422683 | 4.501162 | 1.686364 | 1.103350 | 1.410227 | |
106 | 13.332279 | 39.732100 | 17.426555 | 10.334436 | 13.239945 |
Fun. | n | FR | PRP+ | DY | HZ | Algor.2.1 |
cpu(s) | cpu(s) | cpu(s) | cpu(s) | cpu(s) | ||
Ex.F.Roth | 104 | 4.888547 | 0.550768 | 2.957423 | 0.521059 | 1.823025 |
105 | 35.695368 | 6.393457 | 25.041071 | 5.640529 | 18.592210 | |
106 | 287.654246 | 48.039330 | 228.797928 | 46.116688 | 220.881878 | |
Ex.Trig. | 104 | 6.477725 | 0.879721 | 4.214142 | 1.521069 | 2.249725 |
105 | F | 12.156054 | 116.274122 | 74.643352 | 13.436983 | |
106 | F | 137.648005 | 209.220891 | 159.74406 | 140.003615 | |
Ex.Rosen. | 104 | 0.937497 | 0.334996 | 1.779752 | 0.269760 | 1.198996 |
105 | 3.666262 | 2.938029 | 19.050805 | 2.371920 | 12.510256 | |
106 | 76.992755 | 28.496619 | 154.785583 | 19.094775 | 100.920667 | |
Ex.W.Holst | 104 | 0.927501 | 0.902176 | 0.953671 | 0.641670 | 0.667595 |
105 | 11.200851 | 6.359390 | 5.016512 | 5.216413 | 5.085647 | |
106 | 108.520029 | 63.355358 | 53.428723 | 55.247560 | 52.571641 | |
Ex.Beale | 104 | 0.324522 | 0.275613 | 0.418340 | 0.157054 | 0.228633 |
105 | 2.474278 | 1.870461 | 2.407946 | 1.499047 | 2.405817 | |
106 | 23.457059 | 19.579839 | 26.324518 | 15.640053 | 24.912454 | |
Ex.Penalty | 104 | 0.275020 | 0.201060 | 0.208781 | 0.176900 | 0.203811 |
105 | 1.234828 | 2.239090 | 1.827919 | 1.724014 | 1.821343 | |
106 | 9.546747 | 17.71788 | 27.437794 | 14.134732 | 16.033043 | |
Per.Quad. | 104 | 3.02902 | 3.077180 | 3.040349 | 3.358025 | 46.029533 |
105 | 209.611665 | 103.424010 | 114.210432 | 108.280599 | F | |
Raydan 1 | 104 | 5.081648 | 3.277429 | 4.728205 | 3.713061 | 11.254018 |
105 | 97.715159 | 46.250008 | 127.696125 | 65.739349 | 141.324543 | |
Raydan 2 | 104 | 0.109849 | 0.087747 | 0.228718 | 0.057772 | 0.057323 |
105 | 0.833817 | 0.494746 | 1.978097 | 0.504858 | 0.533447 | |
106 | 8.214171 | 4.698048 | 16.906394 | 4.956234 | 5.812667 | |
Diag.1 | 104 | 5.789406 | 3.827681 | 6.911255 | 3.708083 | 3.538550 |
105 | F | 76.219241 | F | 70.737746 | 70.438309 | |
Diag.2 | 104 | 5.678352 | F | 5.285281 | F | 5.166993 |
105 | 154.534720 | F | 152.123264 | F | 145.797863 | |
Diag.3 | 104 | 6.181573 | 4.845072 | 6.228637 | 6.442592 | 5.311859 |
105 | 57.195661 | 52.810276 | 55.066374 | 48.976185 | 52.161715 | |
Hager | 104 | 1.380050 | 0.721078 | 1.358417 | 0.732179 | 1.320932 |
105 | 22.745343 | 11.942894 | 25.253252 | 11.895805 | 22.043234 | |
106 | F | 122.218850 | F | 156.087713 | 187.476220 | |
Gen.Trid.1 | 104 | 2.445174 | 2.512342 | 2.528296 | 2.258533 | 1.755517 |
105 | 25.293375 | 21.644389 | 25.202319 | 24.239381 | 20.201541 | |
106 | 234.095747 | 254.975842 | 204.126831 | 197.991582 | 145.845123 | |
Ex.Trid.1 | 104 | 6.224192 | 17.140057 | 1.533758 | 1.532657 | 13.182526 |
105 | 143.494302 | 244.260502 | 16.205910 | 14.276184 | 133.624706 | |
Ex.Three.Exp. | 104 | 0.199302 | 0.225054 | 0.198419 | 0.113357 | 0.142117 |
105 | 2.162488 | 2.405353 | 1.905207 | 1.265936 | 1.468474 | |
106 | 18.841829 | 21.440576 | 15.564795 | 10.447416 | 14.452928 | |
Gen.Trid.2 | 104 | 13.541982 | 3.192677 | 4.418622 | 2.970148 | 2.529354 |
105 | F | 30.674646 | F | 24.129818 | 23.986342 | |
Diag.4 | 104 | 0.094771 | 0.057988 | 0.114438 | 0.062960 | 0.093890 |
105 | 1.202458 | 0.388207 | 1.013161 | 0.202075 | 0.890367 | |
106 | 19.755904 | 3.749717 | 8.999546 | 1.906101 | 8.861827 | |
Diag.5 | 104 | 0.217310 | 0.089796 | 0.238359 | 0.141571 | 0.083229 |
105 | 1.373886 | 0.744259 | 2.028916 | 1.963680 | 0.693929 | |
106 | 13.342298 | 8.012713 | 18.812321 | 18.810192 | 6.833566 | |
Ex.Himm. | 104 | 0.611196 | 0.536196 | 0.141640 | 0.087034 | 0.132999 |
105 | 5.446782 | 5.385943 | 1.156565 | 0.724150 | 1.104406 | |
106 | 53.854410 | 53.065089 | 10.564224 | 7.176464 | 11.838695 | |
Gen.PSC1 | 104 | 2.934187 | 1.250311 | 11.817101 | 2.056868 | 28.300200 |
105 | 7.925998 | 15.507716 | 57.672689 | 14.110938 | 98.215964 | |
Ex.PSC1 | 104 | 0.114309 | 0.116711 | 0.137112 | 0.121277 | 0.120501 |
105 | 1.172552 | 0.942523 | 1.131255 | 1.341338 | 1.095562 | |
106 | 13.738276 | 10.067906 | 9.391618 | 12.643046 | 10.754309 | |
Ex.B.Diag.BD1 | 104 | 0.481994 | 0.093661 | 7.119658 | 0.153198 | 0.184555 |
105 | 4.780717 | 0.828624 | 63.779966 | 1.219591 | 1.886973 | |
106 | 45.244221 | 7.678318 | F | 13.094154 | 17.652279 | |
Ex.Maratos | 104 | 7.298980 | 0.215135 | 7.417174 | 0.400084 | 1.720770 |
105 | 72.871313 | 2.399795 | 69.118730 | 2.917748 | 15.965102 | |
106 | F | 24.968870 | F | 37.905524 | 188.771631 | |
Qua.Diag.Pert. | 104 | 20.021639 | 20.021639 | 23.190386 | 6.862350 | 20.0167895 |
Ex.Wood | 104 | 3.626209 | 0.449196 | 2.218795 | 0.481428 | 1.548869 |
105 | 30.297717 | 5.710406 | 25.452955 | 5.599862 | 24.178781 | |
106 | F | 83.358482 | F | 50.926588 | 80.176211 | |
Ex.Hiebert | 104 | 12.325250 | 0.423625 | 4.209053 | 0.505931 | 4.111580 |
105 | 61.420777 | 7.301559 | 44.310328 | 4.483430 | 43.492047 | |
106 | F | 98.625677 | F | 40.245693 | F | |
Ex.Qua.Pena.QP1 | 104 | 0.209738 | 0.131130 | 0.120703 | 0.213959 | 0.120383 |
105 | 0.931057 | 2.044439 | 0.928968 | 1.702844 | 1.680728 | |
106 | 19.710059 | 13.914293 | 5.142260 | 6.478819 | 13.674789 | |
Ex.Qua.Pena.QP2 | 104 | F | 0.368244 | 7.436318 | 0.329816 | 1.646625 |
105 | F | 3.211811 | 214.833356 | 3.229403 | 14.055916 | |
106 | F | 37.820369 | F | 31.182550 | 183.466287 | |
Qua.QF2 | 104 | 6.548727 | 6.315666 | 10.817725 | 6.994623 | 6.088805 |
FLETCBV3 | 1000 | 3.391656 | 3.208908 | 3.322490 | 9.722141 | 10.174606 |
FLETCHCR | 5000 | 17.258755 | 14.429972 | 16.787908 | 14.802347 | 10.449042 |
BDQRTIC | 104 | 83.808804 | F | 11.207452 | 9.377903 | 75.611094 |
TRIDIA | 104 | 20.207208 | 7.295958 | 13.794344 | 31.899388 | 85.858224 |
ARGLINB | 104 | 0.110820 | 0.107058 | 0.077671 | 0.068173 | 0.104807 |
105 | 0.722081 | 5.972367 | 0.946074 | 0.622368 | 0.790848 | |
106 | 7.334012 | 8.595424 | 6.361517 | 13.706507 | 5.689481 | |
ARWHEAD | 104 | 0.370001 | 0.077944 | 0.132404 | 0.090989 | 0.101133 |
105 | 1.579815 | 0.563831 | 1.544622 | 1.490355 | 1.243687 | |
106 | 5.837702 | 5.826076 | 4.586703 | 6.565910 | 5.671701 | |
NONBIA | 104 | 0.537552 | 0.102890 | 1.058223 | 0.103249 | 0.8355213 |
105 | 2.747465 | 1.337234 | 2.297892 | 2.992103 | 3.579316 | |
106 | 5.671371 | 22.742947 | 3.420499 | 6.936500 | 29.025324 | |
NONDQUAR | 104 | 0.442060 | 0.190346 | 0.158307 | 0.400302 | 0.649100 |
105 | 0.796334 | 2.503826 | 0.704471 | 1.828935 | 7.990690 | |
106 | 5.778999 | 20.906151 | 4.532799 | 17.272681 | 67.882148 | |
EG2 | 104 | 0.994080 | 0.313402 | 1.554111 | 1.337630 | 2.278667 |
105 | 7.160837 | 35.861218 | 3.615775 | 7.705992 | 10.859091 | |
106 | 43.235295 | 14.166499 | 11.586350 | 10.875278 | 50.416843 | |
DIXMAANA | 3*104 | 1.271498 | 0.762316 | 1.282368 | 0.736608 | 0.756586 |
3*105 | 11.612663 | 10.441716 | 11.562110 | 8.106027 | 7.118575 | |
3*106 | 114.760219 | 102.835981 | 125.107882 | 79.990697 | 75.923830 | |
DIXMAANB | 3*104 | 0.517920 | 0.385757 | 0.542675 | 0.537647 | 0.354278 |
3*105 | 4.638275 | 7.027447 | 9.318548 | 7.237380 | 4.477140 | |
3*106 | 82.225445 | 70.181132 | 91.019613 | 71.300978 | 43.957930 | |
DIXMAANC | 3*104 | 1.841306 | 0.543875 | 1.021507 | 0.939805 | 0.525989 |
3*105 | 16.686708 | 5.288750 | 9.791455 | 8.450863 | 5.193175 | |
3*106 | 218.619095 | 51.116314 | 98.113856 | 83.487215 | 50.139642 | |
DIXMAAND | 3*104 | 1.368970 | 0.791623 | 1.046740 | 0.935925 | 0.779501 |
3*105 | 12.372986 | 7.759932 | 10.334092 | 9.122740 | 7.526088 | |
3*106 | 120.560906 | 114.310394 | 101.432738 | 89.735515 | 83.011910 | |
DIXMAANE | 3*104 | 32.531045 | F | 34.405608 | 47.489975 | 296.898199 |
DIXMAANF | 3*104 | 35.843660 | F | 29.699410 | 62.706209 | 283.669710 |
DIXMAANG | 3*104 | 26.189755 | F | 36.058009 | 36.637936 | 293.464782 |
DIXMAANH | 3*104 | 47.59872 | F | 25.163339 | 33.846983 | 227.372189 |
DIXMAANI | 3*104 | 108.335661 | F | 139.441850 | 199.234093 | 271.533107 |
DIXMAANJ | 3*104 | 33.383252 | F | 51.195703 | 46.553180 | 207.800703 |
DIXMAANK | 3*104 | 29.999585 | F | 48.466471 | 48.972313 | 193.059611 |
DIXMAANL | 3*104 | 29.847873 | F | 46.188729 | 24.687342 | 240.765512 |
LIARWHD | 104 | 0.293234 | 0.167451 | 0.602854 | 0.194428 | 1.350052 |
105 | 23.934621 | 5.071408 | 4.936705 | 1.784358 | 20.476402 | |
106 | F | 17.774764 | 84.730927 | 20.451442 | 286.401251 | |
ENGVAL1 | 104 | 2.945172 | 1.918970 | 2.481500 | 1.763492 | 2.291727 |
105 | 25.852729 | 21.748152 | 16.928397 | 14.810821 | 14.884762 | |
106 | 165.309436 | 138.481046 | 194.509697 | 198.810671 | 190.808154 | |
EDENSCH | 104 | 0.847047 | 0.669810 | 0.844103 | 0.561064 | 0.506037 |
105 | 7.170456 | 6.061741 | 7.142879 | 5.470726 | 5.411347 | |
106 | 60.312014 | 53.737460 | 70.688592 | 46.010424 | 51.866055 | |
VARDIM | 104 | 0.208694 | 0.744199 | 0.206950 | 0.186933 | 0.177388 |
105 | 1.870152 | 1.437232 | 1.864668 | 2.162191 | 2.020566 | |
106 | 28.081020 | 23.333807 | 27.601484 | 22.723724 | 22.667290 | |
QUARTC | 104 | 105.093070 | 50.764779 | 4.301317 | 54.501230 | 0.196144 |
105 | F | F | 63.741145 | F | 3.083412 | |
106 | F | F | F | F | 50.399742 | |
SINQUAD | 5000 | 31.929046 | 49.651847 | 131.459433 | 29.357854 | 119.515009 |
DENSCHNB | 104 | 0.053052 | 0.039400 | 0.044617 | 0.042022 | 0.039368 |
105 | 0.331962 | 0.373278 | 0.470038 | 0.411125 | 0.381222 | |
106 | 3.100415 | 3.535380 | 5.128739 | 4.312925 | 3.585630 | |
DENSCHNF | 104 | 0.099564 | 0.084990 | 0.105827 | 0.120146 | 0.111866 |
105 | 0.904616 | 0.758068 | 0.936884 | 1.111403 | 1.071840 | |
106 | 9.215575 | 8.414838 | 9.944450 | 11.481290 | 10.755364 | |
COSINE | 104 | 0.172759 | 0.482814 | 0.222049 | 0.133286 | 0.170851 |
105 | 1.422683 | 4.501162 | 1.686364 | 1.103350 | 1.410227 | |
106 | 13.332279 | 39.732100 | 17.426555 | 10.334436 | 13.239945 |
[1] |
Hong Seng Sim, Chuei Yee Chen, Wah June Leong, Jiao Li. Nonmonotone spectral gradient method based on memoryless symmetric rank-one update for large-scale unconstrained optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021143 |
[2] |
Lijuan Zhao, Wenyu Sun. Nonmonotone retrospective conic trust region method for unconstrained optimization. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 309-325. doi: 10.3934/naco.2013.3.309 |
[3] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[4] |
Guanghui Zhou, Qin Ni, Meilan Zeng. A scaled conjugate gradient method with moving asymptotes for unconstrained optimization problems. Journal of Industrial and Management Optimization, 2017, 13 (2) : 595-608. doi: 10.3934/jimo.2016034 |
[5] |
Zhong Wan, Chaoming Hu, Zhanlu Yang. A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1157-1169. doi: 10.3934/dcdsb.2011.16.1157 |
[6] |
Rouhollah Tavakoli, Hongchao Zhang. A nonmonotone spectral projected gradient method for large-scale topology optimization problems. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 395-412. doi: 10.3934/naco.2012.2.395 |
[7] |
Wataru Nakamura, Yasushi Narushima, Hiroshi Yabe. Nonlinear conjugate gradient methods with sufficient descent properties for unconstrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (3) : 595-619. doi: 10.3934/jimo.2013.9.595 |
[8] |
Nora Merabet. Global convergence of a memory gradient method with closed-form step size formula. Conference Publications, 2007, 2007 (Special) : 721-730. doi: 10.3934/proc.2007.2007.721 |
[9] |
Wanbin Tong, Hongjin He, Chen Ling, Liqun Qi. A nonmonotone spectral projected gradient method for tensor eigenvalue complementarity problems. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 425-437. doi: 10.3934/naco.2020042 |
[10] |
Jun Chen, Wenyu Sun, Zhenghao Yang. A non-monotone retrospective trust-region method for unconstrained optimization. Journal of Industrial and Management Optimization, 2013, 9 (4) : 919-944. doi: 10.3934/jimo.2013.9.919 |
[11] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[12] |
Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193 |
[13] |
Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033 |
[14] |
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485 |
[15] |
Yanmei Sun, Yakui Huang. An alternate gradient method for optimization problems with orthogonality constraints. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 665-676. doi: 10.3934/naco.2021003 |
[16] |
Matthias Gerdts, Stefan Horn, Sven-Joachim Kimmerle. Line search globalization of a semismooth Newton method for operator equations in Hilbert spaces with applications in optimal control. Journal of Industrial and Management Optimization, 2017, 13 (1) : 47-62. doi: 10.3934/jimo.2016003 |
[17] |
Mohamed Aly Tawhid. Nonsmooth generalized complementarity as unconstrained optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 411-423. doi: 10.3934/jimo.2010.6.411 |
[18] |
C.Y. Wang, M.X. Li. Convergence property of the Fletcher-Reeves conjugate gradient method with errors. Journal of Industrial and Management Optimization, 2005, 1 (2) : 193-200. doi: 10.3934/jimo.2005.1.193 |
[19] |
Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507 |
[20] |
Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]