[1]
|
N. Andrei, An unconstrained optimization test functions, Advanced Modelling and Optimization, 10 (2008), 147-161.
|
[2]
|
J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA Journal of Numerical Analysis, 8 (1988), 141-148.
doi: 10.1093/imanum/8.1.141.
|
[3]
|
W. Y. Cheng and Q. F. Liu, Sufficient descent nonlinear conjugate gradient methods with conjugacy condition, Numerical Algorithms, 53 (2010), 113-131.
doi: 10.1007/s11075-009-9318-8.
|
[4]
|
Y. H. Dai, On the nonmonotone line search, Journal of Optimization Theory and Applications, 112 (2002), 315-330.
doi: 10.1023/A:1013653923062.
|
[5]
|
Y. H. Dai and Y. X. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM Journal on Optimization, 10 (1999), 177-182.
doi: 10.1137/S1052623497318992.
|
[6]
|
Y. H. Dai and Y. X. Yuan,
Nonlinear Conjugate Gradient Methods (in chinese), Shanghai Scientific and Technical Publishers, Shanghai, 2000.
|
[7]
|
N. Y. Deng, Y. Xiao and F. J. Zhou, Nonmonotone trust region algorithm, Journal of Optimization Theory and Applications, 76 (1993), 259-285.
doi: 10.1007/BF00939608.
|
[8]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, Serial A, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[9]
|
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM Journal on Optimization, 2 (1992), 21-42.
doi: 10.1137/0802003.
|
[10]
|
N. I. M. Gould, D. Orban and Ph. L. Toint, CUTEr: a constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.
doi: 10.1145/962437.962438.
|
[11]
|
L. Grippo, F. Lampariello and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM Journal on Numerical Analysis, 23 (1986), 707-716.
doi: 10.1137/0723046.
|
[12]
|
N. Z. Gu and J. T. Mo, Incorporating nonmonotone strategies into the trust region method for unconstrained optimization, Computers and Mathematics with Applications, 55 (2008), 2158-2172.
doi: 10.1016/j.camwa.2007.08.038.
|
[13]
|
W. W. Hager and H. C. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM Journal on Optimization, 16 (2005), 170-192.
doi: 10.1137/030601880.
|
[14]
|
W. W. Hager and H. C. Zhang, A survey of nonlinear conjugate gradient methods, Pacific Journal of Optimization, 2 (2006), 35-58.
|
[15]
|
H. Iiduka and Y. Narushima, Conjugate gradient methods using value of objective function for unconstrained optimization, Optimization Letters, 6 (2012), 941-955.
doi: 10.1007/s11590-011-0324-0.
|
[16]
|
Y. Ji, Y. J. Li, K. C. Zhang and X. L. Zhang, A new nonmonotone trust region method for conic model for solving unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2010), 1746-1754.
doi: 10.1016/j.cam.2009.09.011.
|
[17]
|
J. T. Mo, K. C. Zhang and Z. X. Wei, A nonmonotone trust region method for unconstrained optimization, Applied Mathematics and Computation, 171 (2005), 371-384.
doi: 10.1016/j.amc.2005.01.048.
|
[18]
|
Y. Narushima and H. Yabe, Global convergence of a memory gradient method for unconstrained optimization, Computational Optimization and Applications, 35 (2006), 325-346.
doi: 10.1007/s10589-006-8719-z.
|
[19]
|
Y. Narushima, H. Yabe and J. A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM Journal on Optimization, 21 (2011), 212-230.
doi: 10.1137/080743573.
|
[20]
|
J. Nocedal and S. J. Wright,
Numerical Optimization, Springer, New York, 1999.
doi: 10.1007/b98874.
|
[21]
|
Y. G. Ou and G. S. Wang, A new supermemory gradient method for unconstrained optimization problems, Optimization Letters, 6 (2012), 975-992.
doi: 10.1007/s11590-011-0328-9.
|
[22]
|
Y. G. Ou and Q. Zhou, A nonmonotonic trust region algorithm for a class of semi-infinite minimax programming, Applied Mathematics and Computation, 215 (2009), 474-480.
doi: 10.1016/j.amc.2009.05.009.
|
[23]
|
M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM Journal on Optimization, 7 (1977), 26-33.
doi: 10.1137/S1052623494266365.
|
[24]
|
Z. J. Shi and J. Shen, A new supermemory gradient method with curve search rule, Applied Mathematics and Computation, 170 (2005), 1-16.
doi: 10.1016/j.amc.2004.10.063.
|
[25]
|
Z. J. Shi and J. Shen, On memory gradient method with trust region for unconstrained optimization, Numerical Algorithms, 41 (2006), 173-196.
doi: 10.1007/s11075-005-9008-0.
|
[26]
|
Z. J. Shi, S. Q. Wang and Z. W. Xu, The convergence of conjugate gradient method with nonmonotone line search, Applied Mathematics and Computation, 217 (2010), 1921-1932.
doi: 10.1016/j.amc.2010.06.047.
|
[27]
|
M. Sun and Q. G. Bai, A new descent memory gradient method and its global convergence, Journal of System Science and Complexity, 24 (2011), 784-794.
doi: 10.1007/s11424-011-8150-0.
|
[28]
|
W. Y. Sun, Nonmonotone trust region method for solving optimization problems, Applied Mathematics and Computation, 156 (2004), 159-174.
doi: 10.1016/j.amc.2003.07.008.
|
[29]
|
W. Y. Sun and Y. X. Yuan,
Optimization Theory and Methods: Nonlinear Programming, Springer, New York, 2006.
|
[30]
|
W. Y. Sun and Q. Y. Zhou, An unconstrained optimization method using nonmonotone second order Goldstein's linesearch, Science in China (Series A): Mathematics, 50 (2007), 1389-1400.
doi: 10.1007/s11425-007-0072-x.
|
[31]
|
Ph. L. Toint, An assessment of nonmonotone line search techniques for unconstrained optimization, SIAM Journal on Scientific and Statistical Computing, 17 (1996), 725-739.
doi: 10.1137/S106482759427021X.
|
[32]
|
Z. S. Yu, W. G. Zhang and B. F. Wu, Strong global convergence of an adaptive nonmonotone memory gradient method, Applied Mathematics and Computation, 185 (2007), 681-688.
doi: 10.1016/j.amc.2006.07.075.
|
[33]
|
H. C. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM Journal on Optimization, 14 (2004), 1043-1056.
doi: 10.1137/S1052623403428208.
|
[34]
|
L. Zhang, W. J. Zhou and D. H. Li, A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006), 629-640.
doi: 10.1093/imanum/drl016.
|
[35]
|
Y. Zheng and Z. P. Wan, A new variant of the memory gradient method for unconstrained optimization, Optimization Letters, 6 (2012), 1643-1655.
doi: 10.1007/s11590-011-0355-6.
|
[36]
|
W. J. Zhou and L. Zhang, Global convergence of the nonmonotone MBFGS method for nonconvex unconstrained minimization, Journal of Computational and Applied Mathematics, 223 (2009), 40-47.
doi: 10.1016/j.cam.2007.12.011.
|