• Previous Article
    Distributed fault-tolerant consensus tracking for networked non-identical motors
  • JIMO Home
  • This Issue
  • Next Article
    Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent
April  2017, 13(2): 901-916. doi: 10.3934/jimo.2016052

Throughput of flow lines with unreliable parallel-machine workstations and blocking

1. 

Department of Statistics, Changwon National University, Changwon, Gyeongnam 641-773, Korea

2. 

School of Industrial Engineering and Naval Architecture, Changwon National University, Changwon, Gyeongnam 641-773, Korea

Received  May 2015 Revised  April 2016 Published  August 2016

Flow lines in which workstations and buffers are linked along a single flow path one after another are widely used for modeling manufacturing systems. In this paper we consider the flow lines with multiple independent unreliable machines at each workstation and blocking. The processing times, time to failure and time to repair of each machine are assumed to exponentially distributed and blocking after service blocking protocol is also assumed. An approximate analysis for throughput in the flow lines is presented. The method developed here is based on the decomposition method using the subsystems with three workstations including virtual station and two buffers between workstations. Some numerical examples are presented for accuracy of approximation.

Citation: Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial & Management Optimization, 2017, 13 (2) : 901-916. doi: 10.3934/jimo.2016052
References:
[1] T. Altiok, Performance Analysis of Manufacturing Systems, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-1924-8.  Google Scholar
[2] J. A. Buzzacott and J. G. Shanthikumar, Stochastic Models of Manufacturing Systems, Prentice-Hall, 1993.   Google Scholar
[3]

Y. Dallery and B. Gershwin, Manufacturing flow line systems: A review of models and analytical results, Queueing Systems, 12 (1992), 3-94.  doi: 10.1007/BF01158636.  Google Scholar

[4]

A. C. DiamantidisC. T. Papadopoulos and C. Heavey, Approximate analysis of serial flow lines with multiple parallel-machine stations, IIE Transactions, 39 (2007), 361-375.  doi: 10.1080/07408170600838423.  Google Scholar

[5]

A. C. Diamantidis and C. T. Papadopoulos, Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines, European Journal of Operational Research, 197 (2009), 592-580.   Google Scholar

[6] S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, 1994.   Google Scholar
[7] W. D. KeltonR. P. Sadowski and D. A. Sadowski, Simulation with ARENA, 2edition, McGraw-Hill, New York, 1998.   Google Scholar
[8]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadephia, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[9]

J. Li, Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems, IEEE Transactions on Automation Science and Engineering, 2 (2005), 40-53.  doi: 10.1109/TASE.2004.835576.  Google Scholar

[10]

J. LiD. E. BlumenfeldN. Huang and J. M. Alden, Throughput analysis of production systems: Recent advances and future topics, International Journal of Production Research, 47 (2009), 3823-3851.  doi: 10.1080/00207540701829752.  Google Scholar

[11]

J. Li and S. M. Meerkov, Production Systems Engineering, Springer, 2009. doi: 10.1007/978-0-387-75579-3.  Google Scholar

[12]

J. LiuS. YangA. Wu and S. J. Hu, Multi-stage throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer, European Journal of Operational Research, 219 (2012), 296-304.  doi: 10.1016/j.ejor.2011.12.025.  Google Scholar

[13]

A. Patchong and D. Willaeys, Modeling and analysis of an unreliable flow line composed of parallel-machine stages, IIE Transactions, 33 (2001), 559-568.  doi: 10.1080/07408170108936854.  Google Scholar

[14] H. G. Perros, Queueing Networks with Blocking, Oxford University Press, 1994.   Google Scholar
[15]

Y. W. Shin and D. H. Moon, Approximation of throughput in tandem queues with multiple servers and blocking, Applied Mathematical Modelling, 38 (2014), 6122-6132.  doi: 10.1016/j.apm.2014.05.015.  Google Scholar

[16]

M. van VuurenI. J. B. F. Adan and S. A. E. Resing-Sassen, Performance analysis of multi-server tandem queues with finite buffers and blocking, OR Spectrum, 27 (2005), 315-338.  doi: 10.1007/s00291-004-0189-z.  Google Scholar

show all references

References:
[1] T. Altiok, Performance Analysis of Manufacturing Systems, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-1924-8.  Google Scholar
[2] J. A. Buzzacott and J. G. Shanthikumar, Stochastic Models of Manufacturing Systems, Prentice-Hall, 1993.   Google Scholar
[3]

Y. Dallery and B. Gershwin, Manufacturing flow line systems: A review of models and analytical results, Queueing Systems, 12 (1992), 3-94.  doi: 10.1007/BF01158636.  Google Scholar

[4]

A. C. DiamantidisC. T. Papadopoulos and C. Heavey, Approximate analysis of serial flow lines with multiple parallel-machine stations, IIE Transactions, 39 (2007), 361-375.  doi: 10.1080/07408170600838423.  Google Scholar

[5]

A. C. Diamantidis and C. T. Papadopoulos, Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines, European Journal of Operational Research, 197 (2009), 592-580.   Google Scholar

[6] S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, 1994.   Google Scholar
[7] W. D. KeltonR. P. Sadowski and D. A. Sadowski, Simulation with ARENA, 2edition, McGraw-Hill, New York, 1998.   Google Scholar
[8]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadephia, 1999. doi: 10.1137/1.9780898719734.  Google Scholar

[9]

J. Li, Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems, IEEE Transactions on Automation Science and Engineering, 2 (2005), 40-53.  doi: 10.1109/TASE.2004.835576.  Google Scholar

[10]

J. LiD. E. BlumenfeldN. Huang and J. M. Alden, Throughput analysis of production systems: Recent advances and future topics, International Journal of Production Research, 47 (2009), 3823-3851.  doi: 10.1080/00207540701829752.  Google Scholar

[11]

J. Li and S. M. Meerkov, Production Systems Engineering, Springer, 2009. doi: 10.1007/978-0-387-75579-3.  Google Scholar

[12]

J. LiuS. YangA. Wu and S. J. Hu, Multi-stage throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer, European Journal of Operational Research, 219 (2012), 296-304.  doi: 10.1016/j.ejor.2011.12.025.  Google Scholar

[13]

A. Patchong and D. Willaeys, Modeling and analysis of an unreliable flow line composed of parallel-machine stages, IIE Transactions, 33 (2001), 559-568.  doi: 10.1080/07408170108936854.  Google Scholar

[14] H. G. Perros, Queueing Networks with Blocking, Oxford University Press, 1994.   Google Scholar
[15]

Y. W. Shin and D. H. Moon, Approximation of throughput in tandem queues with multiple servers and blocking, Applied Mathematical Modelling, 38 (2014), 6122-6132.  doi: 10.1016/j.apm.2014.05.015.  Google Scholar

[16]

M. van VuurenI. J. B. F. Adan and S. A. E. Resing-Sassen, Performance analysis of multi-server tandem queues with finite buffers and blocking, OR Spectrum, 27 (2005), 315-338.  doi: 10.1007/s00291-004-0189-z.  Google Scholar

Figure 1.  Flow line
Figure 2.  Subsystems Li
Figure 3.  Two-stage line ${\hat L}_i$
Table 1.  Throughput for flow lines with $m_i=1$ and $\mu_i=1.0$
$(\nu_i,\gamma_i)$$N$$b_i$Sim(c.i.)AppErr(%)DDXErr(%)
(0.04, 0.2)600.3325 (±0.0006)0.34463.60.296210.9
30.4962 (±0.0013)0.50311.40.48043.2
50.5485 (±0.0013)0.54970.20.54081.4
1000.2870 (±0.0007)0.30385.80.243015.3
30.4583 (±0.0016)0.47183.00.44333.3
50.5157 (±0.0016)0.51910.70.51120.9
(0.1, 0.5)600.3550 (±0.0006)0.35730.60.314911.3
30.5443 (±0.0008)0.54320.20.52723.1
50.6003 (±0.0009)0.59770.40.59171.4
1000.3182 (±0.0003)0.31750.20.269115.4
30.5174 (±0.0006)0.51820.20.50103.2
50.5777 (±0.0008)0.57550.40.57171.0
$(\nu_i,\gamma_i)$$N$$b_i$Sim(c.i.)AppErr(%)DDXErr(%)
(0.04, 0.2)600.3325 (±0.0006)0.34463.60.296210.9
30.4962 (±0.0013)0.50311.40.48043.2
50.5485 (±0.0013)0.54970.20.54081.4
1000.2870 (±0.0007)0.30385.80.243015.3
30.4583 (±0.0016)0.47183.00.44333.3
50.5157 (±0.0016)0.51910.70.51120.9
(0.1, 0.5)600.3550 (±0.0006)0.35730.60.314911.3
30.5443 (±0.0008)0.54320.20.52723.1
50.6003 (±0.0009)0.59770.40.59171.4
1000.3182 (±0.0003)0.31750.20.269115.4
30.5174 (±0.0006)0.51820.20.50103.2
50.5777 (±0.0008)0.57550.40.57171.0
Table 2.  Throughput of flow lines with $N=6$ and $m_i\mu_i=1$
${\pmb m}$$b_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
SimApp (Err(%))SimApp (Err(%)
(2, 2, 2, 2, 2, 2)00.4584 (±0.0007)0.4604 (0.4)0.4725 (±0.0004)0.4678 (1.0)
30.5843 (±0.0010)0.5872 (0.5)0.6077 (±0.0009)0.6067 (0.2)
50.6254 (±0.0010)0.6258 (0.1)0.6504 (±0.0010)0.6488 (0.2)
(1, 1, 2, 2, 3, 3)00.4260 (±0.0012)0.4319 (1.4)0.4421 (±0.0007)0.4407 (0.3)
30.5613 (±0.0010)0.5665 (0.9)0.5930 (±0.0013)0.5918 (0.2)
50.6056 (±0.0011)0.6067 (0.2)0.6388 (±0.0008)0.6369 (0.3)
(3, 3, 2, 2, 1, 1)00.4241 (±0.0013)0.4284 (1.0)0.4398 (±0.0006)0.4382 (0.4)
30.5608 (±0.0016)0.5649 (0.7)0.5926 (±0.0007)0.5909 (0.3)
50.6058 (±0.0009)0.6065 (0.1)0.6385 (±0.0008)0.6367 (0.3)
(1, 2, 3, 3, 2, 1)00.4507 (±0.0009)0.4562 (1.2)0.4707 (±0.0007)0.4671 (0.8)
30.5754 (±0.0010)0.5828 (1.3)0.6069 (±0.0007)0.6070 (0.0)
50.6177 (±0.0013)0.6211 (0.5)0.6486 (±0.0009)0.6488 (0.0)
(3, 2, 1, 1, 2, 3)00.4131 (±0.0011)0.4173 (1.0)0.4277 (±0.0006)0.4264 (0.3)
30.5532 (±0.0010)0.5548 (0.3)0.5839 (±0.0009)0.5811 (0.5)
50.5977 (±0.0018)0.5968 (0.1)0.6320 (±0.0007)0.6283 (0.6)
${\pmb m}$$b_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
SimApp (Err(%))SimApp (Err(%)
(2, 2, 2, 2, 2, 2)00.4584 (±0.0007)0.4604 (0.4)0.4725 (±0.0004)0.4678 (1.0)
30.5843 (±0.0010)0.5872 (0.5)0.6077 (±0.0009)0.6067 (0.2)
50.6254 (±0.0010)0.6258 (0.1)0.6504 (±0.0010)0.6488 (0.2)
(1, 1, 2, 2, 3, 3)00.4260 (±0.0012)0.4319 (1.4)0.4421 (±0.0007)0.4407 (0.3)
30.5613 (±0.0010)0.5665 (0.9)0.5930 (±0.0013)0.5918 (0.2)
50.6056 (±0.0011)0.6067 (0.2)0.6388 (±0.0008)0.6369 (0.3)
(3, 3, 2, 2, 1, 1)00.4241 (±0.0013)0.4284 (1.0)0.4398 (±0.0006)0.4382 (0.4)
30.5608 (±0.0016)0.5649 (0.7)0.5926 (±0.0007)0.5909 (0.3)
50.6058 (±0.0009)0.6065 (0.1)0.6385 (±0.0008)0.6367 (0.3)
(1, 2, 3, 3, 2, 1)00.4507 (±0.0009)0.4562 (1.2)0.4707 (±0.0007)0.4671 (0.8)
30.5754 (±0.0010)0.5828 (1.3)0.6069 (±0.0007)0.6070 (0.0)
50.6177 (±0.0013)0.6211 (0.5)0.6486 (±0.0009)0.6488 (0.0)
(3, 2, 1, 1, 2, 3)00.4131 (±0.0011)0.4173 (1.0)0.4277 (±0.0006)0.4264 (0.3)
30.5532 (±0.0010)0.5548 (0.3)0.5839 (±0.0009)0.5811 (0.5)
50.5977 (±0.0018)0.5968 (0.1)0.6320 (±0.0007)0.6283 (0.6)
Table 3.  Throughput of flow lines with $N=6$ and $\mu_i=1$
${\pmb m}$$b_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
SimApp (Err(%))SimApp (Err(%)
(2, 2, 2, 2, 2, 2)00.8986 (±0.0011)0.9110 (1.4)0.9257 (±0.0008)0.9243 (0.1)
31.1255 (±0.0011)1.1415 (1.4)1.1842 (±0.0012)1.1848 (0.1)
51.2020 (±0.0026)1.2077 (0.5)1.2663 (±0.0012)1.2646 (0.1)
(1, 1, 2, 2, 3, 3)00.5179 (±0.0017)0.5176 (0.1)0.5254 (±0.0011)0.5245 (0.2)
30.6454 (±0.0009)0.6434 (0.3)0.6645 (±0.0012)0.6612 (0.5)
50.6783 (±0.0022)0.6778 (0.1)0.7010 (±0.0014)0.6983 (0.4)
(3, 3, 2, 2, 1, 1)00.5165 (±0.0018)0.5178 (0.3)0.5241 (±0.0010)0.5242 (0.0)
30.6448 (±0.0013)0.6439 (0.1)0.6639 (±0.0010)0.6613 (0.4)
50.6806 (±0.0017)0.6780 (0.4)0.7002 (±0.0013)0.6983 (0.3)
(1, 2, 3, 3, 2, 1)00.6405 (±0.0018)0.6811 (6.3)0.6637 (±0.0008)0.6898 (3.9)
30.7483 (±0.0026)0.7748 (3.5)0.7697 (±0.0013)0.7878 (2.4)
50.7739 (±0.0020)0.7854 (1.5)0.7905 (±0.0013)0.7994 (1.1)
(3, 2, 1, 1, 2, 3)00.5099 (±0.0022)0.5108 (0.2)0.5191 (±0.0010)0.5178 (0.2)
30.6442 (±0.0023)0.6411 (0.5)0.6646 (±0.0009)0.6596 (0.7)
50.6782 (±0.0022)0.6764 (0.3)0.7006 (±0.0010)0.6977 (0.4)
${\pmb m}$$b_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
SimApp (Err(%))SimApp (Err(%)
(2, 2, 2, 2, 2, 2)00.8986 (±0.0011)0.9110 (1.4)0.9257 (±0.0008)0.9243 (0.1)
31.1255 (±0.0011)1.1415 (1.4)1.1842 (±0.0012)1.1848 (0.1)
51.2020 (±0.0026)1.2077 (0.5)1.2663 (±0.0012)1.2646 (0.1)
(1, 1, 2, 2, 3, 3)00.5179 (±0.0017)0.5176 (0.1)0.5254 (±0.0011)0.5245 (0.2)
30.6454 (±0.0009)0.6434 (0.3)0.6645 (±0.0012)0.6612 (0.5)
50.6783 (±0.0022)0.6778 (0.1)0.7010 (±0.0014)0.6983 (0.4)
(3, 3, 2, 2, 1, 1)00.5165 (±0.0018)0.5178 (0.3)0.5241 (±0.0010)0.5242 (0.0)
30.6448 (±0.0013)0.6439 (0.1)0.6639 (±0.0010)0.6613 (0.4)
50.6806 (±0.0017)0.6780 (0.4)0.7002 (±0.0013)0.6983 (0.3)
(1, 2, 3, 3, 2, 1)00.6405 (±0.0018)0.6811 (6.3)0.6637 (±0.0008)0.6898 (3.9)
30.7483 (±0.0026)0.7748 (3.5)0.7697 (±0.0013)0.7878 (2.4)
50.7739 (±0.0020)0.7854 (1.5)0.7905 (±0.0013)0.7994 (1.1)
(3, 2, 1, 1, 2, 3)00.5099 (±0.0022)0.5108 (0.2)0.5191 (±0.0010)0.5178 (0.2)
30.6442 (±0.0023)0.6411 (0.5)0.6646 (±0.0009)0.6596 (0.7)
50.6782 (±0.0022)0.6764 (0.3)0.7006 (±0.0010)0.6977 (0.4)
Table 4.  The number of machines of the lines in Tables 5-6
$N=10$${\pmb m}=(m_1,\cdots,m_{10})$ $N=15$${\pmb m}=(m_1,\cdots,m_{15})$
Line 1$(2,2,2,2,2,2,2,2,2,2)$Line 5$(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)$
Line 2$(1,1,2,2,3,3,2,2,1,1)$Line 6$(1,1,1,2,2,2,3,3,3,2,2,2,1,1,1)$
Line 3$(3,3,2,2,1,1,2,2,3,3)$Line 7$(3,3,3,2,2,2,1,1,1,2,2,2,3,3,3)$
Line 4$(3,2,2,1,2,2,3,2,2,1)$Line 8$(3,3,2,2,1,1,2,2,3,3,2,2,1,1,3)$
$N=10$${\pmb m}=(m_1,\cdots,m_{10})$ $N=15$${\pmb m}=(m_1,\cdots,m_{15})$
Line 1$(2,2,2,2,2,2,2,2,2,2)$Line 5$(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)$
Line 2$(1,1,2,2,3,3,2,2,1,1)$Line 6$(1,1,1,2,2,2,3,3,3,2,2,2,1,1,1)$
Line 3$(3,3,2,2,1,1,2,2,3,3)$Line 7$(3,3,3,2,2,2,1,1,1,2,2,2,3,3,3)$
Line 4$(3,2,2,1,2,2,3,2,2,1)$Line 8$(3,3,2,2,1,1,2,2,3,3,2,2,1,1,3)$
Table 5.  Throughput for the lines with $N=10, 15$, $\mu_i=\frac{1}{m_i}$ and $l_i=m_i+b_i=3$
Lines$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
Sim(c.i.)App (Err(%))Sim(c.i.)App (Err(%)
10.4874 (±0.0003)0.4949 (1.5)0.5104 (±0.0004)0.5082 (0.4)
20.4597 (±0.0007)0.4729 (2.9)0.4934 (±0.0009)0.4914 (0.4)
30.4698 (±0.0011)0.4772 (1.6)0.4982 (±0.0008)0.4954 (0.6)
40.4742 (±0.0009)0.4836 (2.0)0.5023 (±0.0006)0.5004 (0.4)
50.4717 (±0.0007)0.4790 (1.6)0.4973 (±0.0004)0.4930 (0.9)
60.4430 (±0.0009)0.4567 (3.1)0.4808 (±0.0006)0.4767 (0.9)
70.4497 (±0.0007)0.4581 (1.9)0.4839 (±0.0005)0.4781 (1.2)
80.4474 (±0.0008)0.4596 (2.7)0.4828 (±0.0006)0.4790 (0.8)
Lines$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
Sim(c.i.)App (Err(%))Sim(c.i.)App (Err(%)
10.4874 (±0.0003)0.4949 (1.5)0.5104 (±0.0004)0.5082 (0.4)
20.4597 (±0.0007)0.4729 (2.9)0.4934 (±0.0009)0.4914 (0.4)
30.4698 (±0.0011)0.4772 (1.6)0.4982 (±0.0008)0.4954 (0.6)
40.4742 (±0.0009)0.4836 (2.0)0.5023 (±0.0006)0.5004 (0.4)
50.4717 (±0.0007)0.4790 (1.6)0.4973 (±0.0004)0.4930 (0.9)
60.4430 (±0.0009)0.4567 (3.1)0.4808 (±0.0006)0.4767 (0.9)
70.4497 (±0.0007)0.4581 (1.9)0.4839 (±0.0005)0.4781 (1.2)
80.4474 (±0.0008)0.4596 (2.7)0.4828 (±0.0006)0.4790 (0.8)
Table 6.  Throughput for the lines with $N=10, 15$, $\mu_i=1.0$ and $l_i=m_i+b_i=3,5$
Lines$l_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
Sim(c.i.)App (Err(%))Sim(c.i.)App (Err(%)
130.9367 (±0.0008)0.9706 (3.6)0.9908 (±0.0015)0.9965 (0.6)
51.0663 (±0.0014)1.0948 (2.7)1.1382 (±0.0013)1.1427 (0.4)
230.5671 (±0.0010)0.5932 (4.6)0.6018 (±0.0011)0.6116 (1.6)
50.6296 (±0.0016)0.6421 (2.0)0.6634 (±0.0010)0.6663 (0.4)
330.6085 (±0.0010)0.6075 (0.1)0.6279 (±0.0014)0.6244 (0.6)
50.6600 (±0.0017)0.6586 (0.2)0.6820 (±0.0019)0.6797 (0.3)
430.6840 (±0.0013)0.7218 (5.5)0.7162 (±0.0011)0.7362 (2.8)
50.7452 (±0.0014)0.7719 (3.6)0.7722 (±0.0012)0.7878 (2.0)
530.8994 (±0.0012)0.9376 (4.3)0.9606 (±0.0013)0.9651 (0.5)
51.0334 (±0.0016)1.0688 (3.4)1.1134 (±0.0015)1.1197 (0.6)
630.5167 (±0.0008)0.5257 (1.7)0.5539 (±0.0007)0.5515 (0.4)
50.5808 (±0.0015)0.5811 (0.1)0.6215 (±0.0010)0.6156 (0.9)
730.5414 (±0.0009)0.5420 (0.1)0.5689 (±0.0011)0.5658 (0.5)
50.6000 (±0.0013)0.5975 (0.4)0.6324 (±0.0016)0.6285 (0.6)
830.5657 (±0.0009)0.5899 (4.3)0.6006 (±0.0011)0.6091 (1.4)
50.6287 (±0.0012)0.6406 (1.9)0.6620 (±0.0010)0.6656 (0.5)
Lines$l_i$$(\nu_i,\gamma_i)=(0.04, 0.2)$$(\nu_i,\gamma_i)=(0.1, 0.5)$
Sim(c.i.)App (Err(%))Sim(c.i.)App (Err(%)
130.9367 (±0.0008)0.9706 (3.6)0.9908 (±0.0015)0.9965 (0.6)
51.0663 (±0.0014)1.0948 (2.7)1.1382 (±0.0013)1.1427 (0.4)
230.5671 (±0.0010)0.5932 (4.6)0.6018 (±0.0011)0.6116 (1.6)
50.6296 (±0.0016)0.6421 (2.0)0.6634 (±0.0010)0.6663 (0.4)
330.6085 (±0.0010)0.6075 (0.1)0.6279 (±0.0014)0.6244 (0.6)
50.6600 (±0.0017)0.6586 (0.2)0.6820 (±0.0019)0.6797 (0.3)
430.6840 (±0.0013)0.7218 (5.5)0.7162 (±0.0011)0.7362 (2.8)
50.7452 (±0.0014)0.7719 (3.6)0.7722 (±0.0012)0.7878 (2.0)
530.8994 (±0.0012)0.9376 (4.3)0.9606 (±0.0013)0.9651 (0.5)
51.0334 (±0.0016)1.0688 (3.4)1.1134 (±0.0015)1.1197 (0.6)
630.5167 (±0.0008)0.5257 (1.7)0.5539 (±0.0007)0.5515 (0.4)
50.5808 (±0.0015)0.5811 (0.1)0.6215 (±0.0010)0.6156 (0.9)
730.5414 (±0.0009)0.5420 (0.1)0.5689 (±0.0011)0.5658 (0.5)
50.6000 (±0.0013)0.5975 (0.4)0.6324 (±0.0016)0.6285 (0.6)
830.5657 (±0.0009)0.5899 (4.3)0.6006 (±0.0011)0.6091 (1.4)
50.6287 (±0.0012)0.6406 (1.9)0.6620 (±0.0010)0.6656 (0.5)
Table 7.  The number of iterations for $(\mu_i,\nu_i,\gamma_i)=(1.0/m_i,0.1,0.5)$ and $\epsilon=10^{-5}$
$m_i$123
$l_i$13523535
$N$555445545
1077668868
1589881011811
$m_i$123
$l_i$13523535
$N$555445545
1077668868
1589881011811
[1]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[2]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[3]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[4]

G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010

[5]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[6]

Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021008

[7]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[9]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[10]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[11]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[12]

Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049

[13]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[14]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[15]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[16]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[17]

Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054

[18]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[19]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[20]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (79)
  • HTML views (372)
  • Cited by (1)

Other articles
by authors

[Back to Top]