
-
Previous Article
Distributed fault-tolerant consensus tracking for networked non-identical motors
- JIMO Home
- This Issue
-
Next Article
Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent
Throughput of flow lines with unreliable parallel-machine workstations and blocking
1. | Department of Statistics, Changwon National University, Changwon, Gyeongnam 641-773, Korea |
2. | School of Industrial Engineering and Naval Architecture, Changwon National University, Changwon, Gyeongnam 641-773, Korea |
Flow lines in which workstations and buffers are linked along a single flow path one after another are widely used for modeling manufacturing systems. In this paper we consider the flow lines with multiple independent unreliable machines at each workstation and blocking. The processing times, time to failure and time to repair of each machine are assumed to exponentially distributed and blocking after service blocking protocol is also assumed. An approximate analysis for throughput in the flow lines is presented. The method developed here is based on the decomposition method using the subsystems with three workstations including virtual station and two buffers between workstations. Some numerical examples are presented for accuracy of approximation.
References:
[1] |
T. Altiok, Performance Analysis of Manufacturing Systems, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1924-8.![]() |
[2] | J. A. Buzzacott and J. G. Shanthikumar, Stochastic Models of Manufacturing Systems, Prentice-Hall, 1993. Google Scholar |
[3] |
Y. Dallery and B. Gershwin,
Manufacturing flow line systems: A review of models and analytical results, Queueing Systems, 12 (1992), 3-94.
doi: 10.1007/BF01158636. |
[4] |
A. C. Diamantidis, C. T. Papadopoulos and C. Heavey,
Approximate analysis of serial flow lines with multiple parallel-machine stations, IIE Transactions, 39 (2007), 361-375.
doi: 10.1080/07408170600838423. |
[5] |
A. C. Diamantidis and C. T. Papadopoulos, Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines, European Journal of Operational Research, 197 (2009), 592-580. Google Scholar |
[6] | S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, 1994. Google Scholar |
[7] | W. D. Kelton, R. P. Sadowski and D. A. Sadowski, Simulation with ARENA, 2edition, McGraw-Hill, New York, 1998. Google Scholar |
[8] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadephia, 1999.
doi: 10.1137/1.9780898719734. |
[9] |
J. Li,
Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems, IEEE Transactions on Automation Science and Engineering, 2 (2005), 40-53.
doi: 10.1109/TASE.2004.835576. |
[10] |
J. Li, D. E. Blumenfeld, N. Huang and J. M. Alden,
Throughput analysis of production systems: Recent advances and future topics, International Journal of Production Research, 47 (2009), 3823-3851.
doi: 10.1080/00207540701829752. |
[11] |
J. Li and S. M. Meerkov, Production Systems Engineering, Springer, 2009.
doi: 10.1007/978-0-387-75579-3. |
[12] |
J. Liu, S. Yang, A. Wu and S. J. Hu,
Multi-stage throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer, European Journal of Operational Research, 219 (2012), 296-304.
doi: 10.1016/j.ejor.2011.12.025. |
[13] |
A. Patchong and D. Willaeys,
Modeling and analysis of an unreliable flow line composed of parallel-machine stages, IIE Transactions, 33 (2001), 559-568.
doi: 10.1080/07408170108936854. |
[14] |
H. G. Perros, Queueing Networks with Blocking, Oxford University Press, 1994.
![]() |
[15] |
Y. W. Shin and D. H. Moon,
Approximation of throughput in tandem queues with multiple servers and blocking, Applied Mathematical Modelling, 38 (2014), 6122-6132.
doi: 10.1016/j.apm.2014.05.015. |
[16] |
M. van Vuuren, I. J. B. F. Adan and S. A. E. Resing-Sassen,
Performance analysis of multi-server tandem queues with finite buffers and blocking, OR Spectrum, 27 (2005), 315-338.
doi: 10.1007/s00291-004-0189-z. |
show all references
References:
[1] |
T. Altiok, Performance Analysis of Manufacturing Systems, Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-1924-8.![]() |
[2] | J. A. Buzzacott and J. G. Shanthikumar, Stochastic Models of Manufacturing Systems, Prentice-Hall, 1993. Google Scholar |
[3] |
Y. Dallery and B. Gershwin,
Manufacturing flow line systems: A review of models and analytical results, Queueing Systems, 12 (1992), 3-94.
doi: 10.1007/BF01158636. |
[4] |
A. C. Diamantidis, C. T. Papadopoulos and C. Heavey,
Approximate analysis of serial flow lines with multiple parallel-machine stations, IIE Transactions, 39 (2007), 361-375.
doi: 10.1080/07408170600838423. |
[5] |
A. C. Diamantidis and C. T. Papadopoulos, Exact analysis of a two-workstation one-buffer flow line with parallel unreliable machines, European Journal of Operational Research, 197 (2009), 592-580. Google Scholar |
[6] | S. B. Gershwin, Manufacturing Systems Engineering, Prentice-Hall, 1994. Google Scholar |
[7] | W. D. Kelton, R. P. Sadowski and D. A. Sadowski, Simulation with ARENA, 2edition, McGraw-Hill, New York, 1998. Google Scholar |
[8] |
G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM, Philadephia, 1999.
doi: 10.1137/1.9780898719734. |
[9] |
J. Li,
Overlapping decomposition: A system-theoretic method for modeling and analysis of complex manufacturing systems, IEEE Transactions on Automation Science and Engineering, 2 (2005), 40-53.
doi: 10.1109/TASE.2004.835576. |
[10] |
J. Li, D. E. Blumenfeld, N. Huang and J. M. Alden,
Throughput analysis of production systems: Recent advances and future topics, International Journal of Production Research, 47 (2009), 3823-3851.
doi: 10.1080/00207540701829752. |
[11] |
J. Li and S. M. Meerkov, Production Systems Engineering, Springer, 2009.
doi: 10.1007/978-0-387-75579-3. |
[12] |
J. Liu, S. Yang, A. Wu and S. J. Hu,
Multi-stage throughput analysis of a two-stage manufacturing system with parallel unreliable machines and a finite buffer, European Journal of Operational Research, 219 (2012), 296-304.
doi: 10.1016/j.ejor.2011.12.025. |
[13] |
A. Patchong and D. Willaeys,
Modeling and analysis of an unreliable flow line composed of parallel-machine stages, IIE Transactions, 33 (2001), 559-568.
doi: 10.1080/07408170108936854. |
[14] |
H. G. Perros, Queueing Networks with Blocking, Oxford University Press, 1994.
![]() |
[15] |
Y. W. Shin and D. H. Moon,
Approximation of throughput in tandem queues with multiple servers and blocking, Applied Mathematical Modelling, 38 (2014), 6122-6132.
doi: 10.1016/j.apm.2014.05.015. |
[16] |
M. van Vuuren, I. J. B. F. Adan and S. A. E. Resing-Sassen,
Performance analysis of multi-server tandem queues with finite buffers and blocking, OR Spectrum, 27 (2005), 315-338.
doi: 10.1007/s00291-004-0189-z. |



Sim(c.i.) | App | Err(%) | DDX | Err(%) | |||
(0.04, 0.2) | 6 | 0 | 0.3325 (±0.0006) | 0.3446 | 3.6 | 0.2962 | 10.9 |
3 | 0.4962 (±0.0013) | 0.5031 | 1.4 | 0.4804 | 3.2 | ||
5 | 0.5485 (±0.0013) | 0.5497 | 0.2 | 0.5408 | 1.4 | ||
10 | 0 | 0.2870 (±0.0007) | 0.3038 | 5.8 | 0.2430 | 15.3 | |
3 | 0.4583 (±0.0016) | 0.4718 | 3.0 | 0.4433 | 3.3 | ||
5 | 0.5157 (±0.0016) | 0.5191 | 0.7 | 0.5112 | 0.9 | ||
(0.1, 0.5) | 6 | 0 | 0.3550 (±0.0006) | 0.3573 | 0.6 | 0.3149 | 11.3 |
3 | 0.5443 (±0.0008) | 0.5432 | 0.2 | 0.5272 | 3.1 | ||
5 | 0.6003 (±0.0009) | 0.5977 | 0.4 | 0.5917 | 1.4 | ||
10 | 0 | 0.3182 (±0.0003) | 0.3175 | 0.2 | 0.2691 | 15.4 | |
3 | 0.5174 (±0.0006) | 0.5182 | 0.2 | 0.5010 | 3.2 | ||
5 | 0.5777 (±0.0008) | 0.5755 | 0.4 | 0.5717 | 1.0 |
Sim(c.i.) | App | Err(%) | DDX | Err(%) | |||
(0.04, 0.2) | 6 | 0 | 0.3325 (±0.0006) | 0.3446 | 3.6 | 0.2962 | 10.9 |
3 | 0.4962 (±0.0013) | 0.5031 | 1.4 | 0.4804 | 3.2 | ||
5 | 0.5485 (±0.0013) | 0.5497 | 0.2 | 0.5408 | 1.4 | ||
10 | 0 | 0.2870 (±0.0007) | 0.3038 | 5.8 | 0.2430 | 15.3 | |
3 | 0.4583 (±0.0016) | 0.4718 | 3.0 | 0.4433 | 3.3 | ||
5 | 0.5157 (±0.0016) | 0.5191 | 0.7 | 0.5112 | 0.9 | ||
(0.1, 0.5) | 6 | 0 | 0.3550 (±0.0006) | 0.3573 | 0.6 | 0.3149 | 11.3 |
3 | 0.5443 (±0.0008) | 0.5432 | 0.2 | 0.5272 | 3.1 | ||
5 | 0.6003 (±0.0009) | 0.5977 | 0.4 | 0.5917 | 1.4 | ||
10 | 0 | 0.3182 (±0.0003) | 0.3175 | 0.2 | 0.2691 | 15.4 | |
3 | 0.5174 (±0.0006) | 0.5182 | 0.2 | 0.5010 | 3.2 | ||
5 | 0.5777 (±0.0008) | 0.5755 | 0.4 | 0.5717 | 1.0 |
Sim | App (Err(%)) | Sim | App (Err(%) | ||
(2, 2, 2, 2, 2, 2) | 0 | 0.4584 (±0.0007) | 0.4604 (0.4) | 0.4725 (±0.0004) | 0.4678 (1.0) |
3 | 0.5843 (±0.0010) | 0.5872 (0.5) | 0.6077 (±0.0009) | 0.6067 (0.2) | |
5 | 0.6254 (±0.0010) | 0.6258 (0.1) | 0.6504 (±0.0010) | 0.6488 (0.2) | |
(1, 1, 2, 2, 3, 3) | 0 | 0.4260 (±0.0012) | 0.4319 (1.4) | 0.4421 (±0.0007) | 0.4407 (0.3) |
3 | 0.5613 (±0.0010) | 0.5665 (0.9) | 0.5930 (±0.0013) | 0.5918 (0.2) | |
5 | 0.6056 (±0.0011) | 0.6067 (0.2) | 0.6388 (±0.0008) | 0.6369 (0.3) | |
(3, 3, 2, 2, 1, 1) | 0 | 0.4241 (±0.0013) | 0.4284 (1.0) | 0.4398 (±0.0006) | 0.4382 (0.4) |
3 | 0.5608 (±0.0016) | 0.5649 (0.7) | 0.5926 (±0.0007) | 0.5909 (0.3) | |
5 | 0.6058 (±0.0009) | 0.6065 (0.1) | 0.6385 (±0.0008) | 0.6367 (0.3) | |
(1, 2, 3, 3, 2, 1) | 0 | 0.4507 (±0.0009) | 0.4562 (1.2) | 0.4707 (±0.0007) | 0.4671 (0.8) |
3 | 0.5754 (±0.0010) | 0.5828 (1.3) | 0.6069 (±0.0007) | 0.6070 (0.0) | |
5 | 0.6177 (±0.0013) | 0.6211 (0.5) | 0.6486 (±0.0009) | 0.6488 (0.0) | |
(3, 2, 1, 1, 2, 3) | 0 | 0.4131 (±0.0011) | 0.4173 (1.0) | 0.4277 (±0.0006) | 0.4264 (0.3) |
3 | 0.5532 (±0.0010) | 0.5548 (0.3) | 0.5839 (±0.0009) | 0.5811 (0.5) | |
5 | 0.5977 (±0.0018) | 0.5968 (0.1) | 0.6320 (±0.0007) | 0.6283 (0.6) |
Sim | App (Err(%)) | Sim | App (Err(%) | ||
(2, 2, 2, 2, 2, 2) | 0 | 0.4584 (±0.0007) | 0.4604 (0.4) | 0.4725 (±0.0004) | 0.4678 (1.0) |
3 | 0.5843 (±0.0010) | 0.5872 (0.5) | 0.6077 (±0.0009) | 0.6067 (0.2) | |
5 | 0.6254 (±0.0010) | 0.6258 (0.1) | 0.6504 (±0.0010) | 0.6488 (0.2) | |
(1, 1, 2, 2, 3, 3) | 0 | 0.4260 (±0.0012) | 0.4319 (1.4) | 0.4421 (±0.0007) | 0.4407 (0.3) |
3 | 0.5613 (±0.0010) | 0.5665 (0.9) | 0.5930 (±0.0013) | 0.5918 (0.2) | |
5 | 0.6056 (±0.0011) | 0.6067 (0.2) | 0.6388 (±0.0008) | 0.6369 (0.3) | |
(3, 3, 2, 2, 1, 1) | 0 | 0.4241 (±0.0013) | 0.4284 (1.0) | 0.4398 (±0.0006) | 0.4382 (0.4) |
3 | 0.5608 (±0.0016) | 0.5649 (0.7) | 0.5926 (±0.0007) | 0.5909 (0.3) | |
5 | 0.6058 (±0.0009) | 0.6065 (0.1) | 0.6385 (±0.0008) | 0.6367 (0.3) | |
(1, 2, 3, 3, 2, 1) | 0 | 0.4507 (±0.0009) | 0.4562 (1.2) | 0.4707 (±0.0007) | 0.4671 (0.8) |
3 | 0.5754 (±0.0010) | 0.5828 (1.3) | 0.6069 (±0.0007) | 0.6070 (0.0) | |
5 | 0.6177 (±0.0013) | 0.6211 (0.5) | 0.6486 (±0.0009) | 0.6488 (0.0) | |
(3, 2, 1, 1, 2, 3) | 0 | 0.4131 (±0.0011) | 0.4173 (1.0) | 0.4277 (±0.0006) | 0.4264 (0.3) |
3 | 0.5532 (±0.0010) | 0.5548 (0.3) | 0.5839 (±0.0009) | 0.5811 (0.5) | |
5 | 0.5977 (±0.0018) | 0.5968 (0.1) | 0.6320 (±0.0007) | 0.6283 (0.6) |
Sim | App (Err(%)) | Sim | App (Err(%) | ||
(2, 2, 2, 2, 2, 2) | 0 | 0.8986 (±0.0011) | 0.9110 (1.4) | 0.9257 (±0.0008) | 0.9243 (0.1) |
3 | 1.1255 (±0.0011) | 1.1415 (1.4) | 1.1842 (±0.0012) | 1.1848 (0.1) | |
5 | 1.2020 (±0.0026) | 1.2077 (0.5) | 1.2663 (±0.0012) | 1.2646 (0.1) | |
(1, 1, 2, 2, 3, 3) | 0 | 0.5179 (±0.0017) | 0.5176 (0.1) | 0.5254 (±0.0011) | 0.5245 (0.2) |
3 | 0.6454 (±0.0009) | 0.6434 (0.3) | 0.6645 (±0.0012) | 0.6612 (0.5) | |
5 | 0.6783 (±0.0022) | 0.6778 (0.1) | 0.7010 (±0.0014) | 0.6983 (0.4) | |
(3, 3, 2, 2, 1, 1) | 0 | 0.5165 (±0.0018) | 0.5178 (0.3) | 0.5241 (±0.0010) | 0.5242 (0.0) |
3 | 0.6448 (±0.0013) | 0.6439 (0.1) | 0.6639 (±0.0010) | 0.6613 (0.4) | |
5 | 0.6806 (±0.0017) | 0.6780 (0.4) | 0.7002 (±0.0013) | 0.6983 (0.3) | |
(1, 2, 3, 3, 2, 1) | 0 | 0.6405 (±0.0018) | 0.6811 (6.3) | 0.6637 (±0.0008) | 0.6898 (3.9) |
3 | 0.7483 (±0.0026) | 0.7748 (3.5) | 0.7697 (±0.0013) | 0.7878 (2.4) | |
5 | 0.7739 (±0.0020) | 0.7854 (1.5) | 0.7905 (±0.0013) | 0.7994 (1.1) | |
(3, 2, 1, 1, 2, 3) | 0 | 0.5099 (±0.0022) | 0.5108 (0.2) | 0.5191 (±0.0010) | 0.5178 (0.2) |
3 | 0.6442 (±0.0023) | 0.6411 (0.5) | 0.6646 (±0.0009) | 0.6596 (0.7) | |
5 | 0.6782 (±0.0022) | 0.6764 (0.3) | 0.7006 (±0.0010) | 0.6977 (0.4) |
Sim | App (Err(%)) | Sim | App (Err(%) | ||
(2, 2, 2, 2, 2, 2) | 0 | 0.8986 (±0.0011) | 0.9110 (1.4) | 0.9257 (±0.0008) | 0.9243 (0.1) |
3 | 1.1255 (±0.0011) | 1.1415 (1.4) | 1.1842 (±0.0012) | 1.1848 (0.1) | |
5 | 1.2020 (±0.0026) | 1.2077 (0.5) | 1.2663 (±0.0012) | 1.2646 (0.1) | |
(1, 1, 2, 2, 3, 3) | 0 | 0.5179 (±0.0017) | 0.5176 (0.1) | 0.5254 (±0.0011) | 0.5245 (0.2) |
3 | 0.6454 (±0.0009) | 0.6434 (0.3) | 0.6645 (±0.0012) | 0.6612 (0.5) | |
5 | 0.6783 (±0.0022) | 0.6778 (0.1) | 0.7010 (±0.0014) | 0.6983 (0.4) | |
(3, 3, 2, 2, 1, 1) | 0 | 0.5165 (±0.0018) | 0.5178 (0.3) | 0.5241 (±0.0010) | 0.5242 (0.0) |
3 | 0.6448 (±0.0013) | 0.6439 (0.1) | 0.6639 (±0.0010) | 0.6613 (0.4) | |
5 | 0.6806 (±0.0017) | 0.6780 (0.4) | 0.7002 (±0.0013) | 0.6983 (0.3) | |
(1, 2, 3, 3, 2, 1) | 0 | 0.6405 (±0.0018) | 0.6811 (6.3) | 0.6637 (±0.0008) | 0.6898 (3.9) |
3 | 0.7483 (±0.0026) | 0.7748 (3.5) | 0.7697 (±0.0013) | 0.7878 (2.4) | |
5 | 0.7739 (±0.0020) | 0.7854 (1.5) | 0.7905 (±0.0013) | 0.7994 (1.1) | |
(3, 2, 1, 1, 2, 3) | 0 | 0.5099 (±0.0022) | 0.5108 (0.2) | 0.5191 (±0.0010) | 0.5178 (0.2) |
3 | 0.6442 (±0.0023) | 0.6411 (0.5) | 0.6646 (±0.0009) | 0.6596 (0.7) | |
5 | 0.6782 (±0.0022) | 0.6764 (0.3) | 0.7006 (±0.0010) | 0.6977 (0.4) |
| |||
Line 1 | Line 5 | ||
Line 2 | Line 6 | ||
Line 3 | Line 7 | ||
Line 4 | Line 8 |
| |||
Line 1 | Line 5 | ||
Line 2 | Line 6 | ||
Line 3 | Line 7 | ||
Line 4 | Line 8 |
Lines | ||||
Sim(c.i.) | App (Err(%)) | Sim(c.i.) | App (Err(%) | |
1 | 0.4874 (±0.0003) | 0.4949 (1.5) | 0.5104 (±0.0004) | 0.5082 (0.4) |
2 | 0.4597 (±0.0007) | 0.4729 (2.9) | 0.4934 (±0.0009) | 0.4914 (0.4) |
3 | 0.4698 (±0.0011) | 0.4772 (1.6) | 0.4982 (±0.0008) | 0.4954 (0.6) |
4 | 0.4742 (±0.0009) | 0.4836 (2.0) | 0.5023 (±0.0006) | 0.5004 (0.4) |
5 | 0.4717 (±0.0007) | 0.4790 (1.6) | 0.4973 (±0.0004) | 0.4930 (0.9) |
6 | 0.4430 (±0.0009) | 0.4567 (3.1) | 0.4808 (±0.0006) | 0.4767 (0.9) |
7 | 0.4497 (±0.0007) | 0.4581 (1.9) | 0.4839 (±0.0005) | 0.4781 (1.2) |
8 | 0.4474 (±0.0008) | 0.4596 (2.7) | 0.4828 (±0.0006) | 0.4790 (0.8) |
Lines | ||||
Sim(c.i.) | App (Err(%)) | Sim(c.i.) | App (Err(%) | |
1 | 0.4874 (±0.0003) | 0.4949 (1.5) | 0.5104 (±0.0004) | 0.5082 (0.4) |
2 | 0.4597 (±0.0007) | 0.4729 (2.9) | 0.4934 (±0.0009) | 0.4914 (0.4) |
3 | 0.4698 (±0.0011) | 0.4772 (1.6) | 0.4982 (±0.0008) | 0.4954 (0.6) |
4 | 0.4742 (±0.0009) | 0.4836 (2.0) | 0.5023 (±0.0006) | 0.5004 (0.4) |
5 | 0.4717 (±0.0007) | 0.4790 (1.6) | 0.4973 (±0.0004) | 0.4930 (0.9) |
6 | 0.4430 (±0.0009) | 0.4567 (3.1) | 0.4808 (±0.0006) | 0.4767 (0.9) |
7 | 0.4497 (±0.0007) | 0.4581 (1.9) | 0.4839 (±0.0005) | 0.4781 (1.2) |
8 | 0.4474 (±0.0008) | 0.4596 (2.7) | 0.4828 (±0.0006) | 0.4790 (0.8) |
Lines | |||||
Sim(c.i.) | App (Err(%)) | Sim(c.i.) | App (Err(%) | ||
1 | 3 | 0.9367 (±0.0008) | 0.9706 (3.6) | 0.9908 (±0.0015) | 0.9965 (0.6) |
5 | 1.0663 (±0.0014) | 1.0948 (2.7) | 1.1382 (±0.0013) | 1.1427 (0.4) | |
2 | 3 | 0.5671 (±0.0010) | 0.5932 (4.6) | 0.6018 (±0.0011) | 0.6116 (1.6) |
5 | 0.6296 (±0.0016) | 0.6421 (2.0) | 0.6634 (±0.0010) | 0.6663 (0.4) | |
3 | 3 | 0.6085 (±0.0010) | 0.6075 (0.1) | 0.6279 (±0.0014) | 0.6244 (0.6) |
5 | 0.6600 (±0.0017) | 0.6586 (0.2) | 0.6820 (±0.0019) | 0.6797 (0.3) | |
4 | 3 | 0.6840 (±0.0013) | 0.7218 (5.5) | 0.7162 (±0.0011) | 0.7362 (2.8) |
5 | 0.7452 (±0.0014) | 0.7719 (3.6) | 0.7722 (±0.0012) | 0.7878 (2.0) | |
5 | 3 | 0.8994 (±0.0012) | 0.9376 (4.3) | 0.9606 (±0.0013) | 0.9651 (0.5) |
5 | 1.0334 (±0.0016) | 1.0688 (3.4) | 1.1134 (±0.0015) | 1.1197 (0.6) | |
6 | 3 | 0.5167 (±0.0008) | 0.5257 (1.7) | 0.5539 (±0.0007) | 0.5515 (0.4) |
5 | 0.5808 (±0.0015) | 0.5811 (0.1) | 0.6215 (±0.0010) | 0.6156 (0.9) | |
7 | 3 | 0.5414 (±0.0009) | 0.5420 (0.1) | 0.5689 (±0.0011) | 0.5658 (0.5) |
5 | 0.6000 (±0.0013) | 0.5975 (0.4) | 0.6324 (±0.0016) | 0.6285 (0.6) | |
8 | 3 | 0.5657 (±0.0009) | 0.5899 (4.3) | 0.6006 (±0.0011) | 0.6091 (1.4) |
5 | 0.6287 (±0.0012) | 0.6406 (1.9) | 0.6620 (±0.0010) | 0.6656 (0.5) |
Lines | |||||
Sim(c.i.) | App (Err(%)) | Sim(c.i.) | App (Err(%) | ||
1 | 3 | 0.9367 (±0.0008) | 0.9706 (3.6) | 0.9908 (±0.0015) | 0.9965 (0.6) |
5 | 1.0663 (±0.0014) | 1.0948 (2.7) | 1.1382 (±0.0013) | 1.1427 (0.4) | |
2 | 3 | 0.5671 (±0.0010) | 0.5932 (4.6) | 0.6018 (±0.0011) | 0.6116 (1.6) |
5 | 0.6296 (±0.0016) | 0.6421 (2.0) | 0.6634 (±0.0010) | 0.6663 (0.4) | |
3 | 3 | 0.6085 (±0.0010) | 0.6075 (0.1) | 0.6279 (±0.0014) | 0.6244 (0.6) |
5 | 0.6600 (±0.0017) | 0.6586 (0.2) | 0.6820 (±0.0019) | 0.6797 (0.3) | |
4 | 3 | 0.6840 (±0.0013) | 0.7218 (5.5) | 0.7162 (±0.0011) | 0.7362 (2.8) |
5 | 0.7452 (±0.0014) | 0.7719 (3.6) | 0.7722 (±0.0012) | 0.7878 (2.0) | |
5 | 3 | 0.8994 (±0.0012) | 0.9376 (4.3) | 0.9606 (±0.0013) | 0.9651 (0.5) |
5 | 1.0334 (±0.0016) | 1.0688 (3.4) | 1.1134 (±0.0015) | 1.1197 (0.6) | |
6 | 3 | 0.5167 (±0.0008) | 0.5257 (1.7) | 0.5539 (±0.0007) | 0.5515 (0.4) |
5 | 0.5808 (±0.0015) | 0.5811 (0.1) | 0.6215 (±0.0010) | 0.6156 (0.9) | |
7 | 3 | 0.5414 (±0.0009) | 0.5420 (0.1) | 0.5689 (±0.0011) | 0.5658 (0.5) |
5 | 0.6000 (±0.0013) | 0.5975 (0.4) | 0.6324 (±0.0016) | 0.6285 (0.6) | |
8 | 3 | 0.5657 (±0.0009) | 0.5899 (4.3) | 0.6006 (±0.0011) | 0.6091 (1.4) |
5 | 0.6287 (±0.0012) | 0.6406 (1.9) | 0.6620 (±0.0010) | 0.6656 (0.5) |
1 | 2 | 3 | |||||||
1 | 3 | 5 | 2 | 3 | 5 | 3 | 5 | ||
5 | 5 | 5 | 4 | 4 | 5 | 5 | 4 | 5 | |
10 | 7 | 7 | 6 | 6 | 8 | 8 | 6 | 8 | |
15 | 8 | 9 | 8 | 8 | 10 | 11 | 8 | 11 |
1 | 2 | 3 | |||||||
1 | 3 | 5 | 2 | 3 | 5 | 3 | 5 | ||
5 | 5 | 5 | 4 | 4 | 5 | 5 | 4 | 5 | |
10 | 7 | 7 | 6 | 6 | 8 | 8 | 6 | 8 | |
15 | 8 | 9 | 8 | 8 | 10 | 11 | 8 | 11 |
[1] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[2] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[3] |
Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021030 |
[4] |
G. Deugoué, B. Jidjou Moghomye, T. Tachim Medjo. Approximation of a stochastic two-phase flow model by a splitting-up method. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1135-1170. doi: 10.3934/cpaa.2021010 |
[5] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[6] |
Ana Rita Nogueira, João Gama, Carlos Abreu Ferreira. Causal discovery in machine learning: Theories and applications. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021008 |
[7] |
Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 |
[8] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[9] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[10] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[11] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[12] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[13] |
Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005 |
[14] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[15] |
Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021053 |
[16] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021013 |
[17] |
Muberra Allahverdi, Harun Aydilek, Asiye Aydilek, Ali Allahverdi. A better dominance relation and heuristics for Two-Machine No-Wait Flowshops with Maximum Lateness Performance Measure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1973-1991. doi: 10.3934/jimo.2020054 |
[18] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[19] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390 |
[20] |
Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]