• Previous Article
    New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost
  • JIMO Home
  • This Issue
  • Next Article
    Throughput of flow lines with unreliable parallel-machine workstations and blocking
April  2017, 13(2): 917-929. doi: 10.3934/jimo.2016053

Distributed fault-tolerant consensus tracking for networked non-identical motors

1. 

College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China

2. 

School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

3. 

College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha 410073, Hunan, China

* Corresponding author: Changfan Zhang, zhangchangfan@263.net

Received  June 2015 Revised  June 2016 Published  August 2016

Fund Project: The first author is supported by NSF grants 61273157 and 61473117

This paper investigates a distributed fault-tolerant consensus tracking algorithm for a group non-identical motors with unmeasured angular speed and unknown failures. First, the failures are modeled by nonlinear functions, and sliding mode observer is designed to estimate the angular speed and nonlinear failures. Then, in order to achieve the desired results, a novel distributed fault-tolerant algorithm is constructed based on the estimated angular speed and reconstructed failures. Theoretical analysis illustrates the stability and globally exponentially asymptotically convergence of the proposed observer and controller. The numerical simulations verify the high estimation accuracy, effectiveness and robustness of the proposed methods. The semi-physical experiments based on RT-LAB real-time simulator further test the system and controller with accurate performance in real-time.

Citation: Han Wu, Changfan Zhang, Jing He, Kaihui Zhao. Distributed fault-tolerant consensus tracking for networked non-identical motors. Journal of Industrial & Management Optimization, 2017, 13 (2) : 917-929. doi: 10.3934/jimo.2016053
References:
[1]

A. A. AhmadiF. R. Salmasi and M. Noori-Manzar, Speed sensorless and sensor-fault tolerant optimal pi regulator for networked dc motor system with unknown time-delay and packet dropout, IEEE Trans. Industrial Electronics, 61 (2014), 708-717. doi: 10.1109/TIE.2013.2253073. Google Scholar

[2]

F. Aghili, Fault-tolerant torque control of BLDC motors, IEEE Trans. Power Electronics, 26 (2011), 355-363. doi: 10.1109/TPEL.2010.2060361. Google Scholar

[3]

S. AbouridaC. Dufour and J. Belanger, Hardware-in-the-loop simulation of finite-element based motor drives with RT-Lab and JMAG, IEEE International Symposium on Industrial Electronics, 3 (2006), 2462-2466. doi: 10.1109/ISIE.2006.295959. Google Scholar

[4]

B. JiangM. Staroswiecki and V. Cocquempot, Fault accommodation for nonlinear dynamic systems, IEEE Trans. Autom. Control, 51 (2006), 1578-1583. doi: 10.1109/TAC.2006.878732. Google Scholar

[5] H. K. Khalil, Nonlinear Systems, 3 edition, Prentice hall, Upper Saddle River, 2002. Google Scholar
[6]

M. Karimadini and H. Lin, Fault-tolerant cooperative tasking for multi-agent systems, Int. J. Control, 84 (2011), 2092-2107. doi: 10.1080/00207179.2011.631149. Google Scholar

[7]

E. Semsar-Kazerooni and K. Khorasani, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Trans. Control Syst. Technol., 18 (2010), 1155-1161. doi: 10.1109/TCST.2009.2032921. Google Scholar

[8]

H. Su and M. Z. Q. Chen, Multi-agent containment control with input saturation on switching topologies, IET Control Theory Appli., 9 (2015), 399-409. doi: 10.1049/iet-cta.2014.0393. Google Scholar

[9]

H. SuM. Z. Q. Chen and X. Wang, Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs, Nonlinear Dynamics, 82 (2015), 2059-2068. doi: 10.1007/s11071-015-2299-3. Google Scholar

[10]

H. SuM. Z. Q. Chen and G. Chen, Robust semi-global coordinated tracking of linear multi-agent systems with input saturation, Int. J. Robust Nonlinear Control, 14 (2015), 2375-2390. doi: 10.1002/rnc.3210. Google Scholar

[11]

H. SuG. Jia and M. Z. Q. Chen, Semi-global containment control of multi-agent systems with intermittent input saturation, Journal of the Franklin Institute, 352 (2015), 3504-3525. doi: 10.1016/j.jfranklin.2014.09.006. Google Scholar

[12]

I. ShamesA. M. H. Teixeira and H. Sandberg, Distributed fault detection for interconnected second-order systems, Automatica, 47 (2011), 2757-2764. doi: 10.1016/j.automatica.2011.09.011. Google Scholar

[13]

Q. ShenB. Jiang and P. Shi, Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults, IEEE Trans. Fuzzy Systems, 22 (2013), 494-504. doi: 10.1109/TFUZZ.2013.2260757. Google Scholar

[14]

Y. Shtessel, C. Edwards and L. Fridman, et al., Sliding Mode Control and Observation, Birkhauser, New York, 2014.Google Scholar

[15]

P. TichyP. Slechta and R. J. Staron, Multi-agent technology for fault tolerance and flexible control, IEEE Trans. Syst. Man Cybern. C, 36 (2006), 700-704. doi: 10.1109/TSMCC.2006.879381. Google Scholar

[16]

C. XuY. Zheng and H. Su, Containment Control for Coupled Harmonic Oscillators with Multiple Leaders under Directed Topology, Int. J. Control, 88 (2015), 248-255. doi: 10.1080/00207179.2014.944873. Google Scholar

[17]

H. YangM. Staroswiecki and B. Jiang, Fault tolerant cooperative control for a class of nonlinear multi-agent systems, Syst. Control Lett., 60 (2011), 271-277. doi: 10.1016/j.sysconle.2011.02.004. Google Scholar

[18]

J. ZhangA. K. Swain and S. K. Nguang, Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems, Asian J. Control, 17 (2015), 1296-1309. doi: 10.1002/asjc.987. Google Scholar

[19]

Z. ZuoJ. Zhang and Y. Wang, Distributed consensus of linear multi-agent systems with fault tolerant control protocols, Proc. 33th IEEE Chinese Control Conf., (2014), 1656-1661. doi: 10.1109/ChiCC.2014.6896877. Google Scholar

show all references

References:
[1]

A. A. AhmadiF. R. Salmasi and M. Noori-Manzar, Speed sensorless and sensor-fault tolerant optimal pi regulator for networked dc motor system with unknown time-delay and packet dropout, IEEE Trans. Industrial Electronics, 61 (2014), 708-717. doi: 10.1109/TIE.2013.2253073. Google Scholar

[2]

F. Aghili, Fault-tolerant torque control of BLDC motors, IEEE Trans. Power Electronics, 26 (2011), 355-363. doi: 10.1109/TPEL.2010.2060361. Google Scholar

[3]

S. AbouridaC. Dufour and J. Belanger, Hardware-in-the-loop simulation of finite-element based motor drives with RT-Lab and JMAG, IEEE International Symposium on Industrial Electronics, 3 (2006), 2462-2466. doi: 10.1109/ISIE.2006.295959. Google Scholar

[4]

B. JiangM. Staroswiecki and V. Cocquempot, Fault accommodation for nonlinear dynamic systems, IEEE Trans. Autom. Control, 51 (2006), 1578-1583. doi: 10.1109/TAC.2006.878732. Google Scholar

[5] H. K. Khalil, Nonlinear Systems, 3 edition, Prentice hall, Upper Saddle River, 2002. Google Scholar
[6]

M. Karimadini and H. Lin, Fault-tolerant cooperative tasking for multi-agent systems, Int. J. Control, 84 (2011), 2092-2107. doi: 10.1080/00207179.2011.631149. Google Scholar

[7]

E. Semsar-Kazerooni and K. Khorasani, Team consensus for a network of unmanned vehicles in presence of actuator faults, IEEE Trans. Control Syst. Technol., 18 (2010), 1155-1161. doi: 10.1109/TCST.2009.2032921. Google Scholar

[8]

H. Su and M. Z. Q. Chen, Multi-agent containment control with input saturation on switching topologies, IET Control Theory Appli., 9 (2015), 399-409. doi: 10.1049/iet-cta.2014.0393. Google Scholar

[9]

H. SuM. Z. Q. Chen and X. Wang, Global coordinated tracking of multi-agent systems with disturbance uncertainties via bounded control inputs, Nonlinear Dynamics, 82 (2015), 2059-2068. doi: 10.1007/s11071-015-2299-3. Google Scholar

[10]

H. SuM. Z. Q. Chen and G. Chen, Robust semi-global coordinated tracking of linear multi-agent systems with input saturation, Int. J. Robust Nonlinear Control, 14 (2015), 2375-2390. doi: 10.1002/rnc.3210. Google Scholar

[11]

H. SuG. Jia and M. Z. Q. Chen, Semi-global containment control of multi-agent systems with intermittent input saturation, Journal of the Franklin Institute, 352 (2015), 3504-3525. doi: 10.1016/j.jfranklin.2014.09.006. Google Scholar

[12]

I. ShamesA. M. H. Teixeira and H. Sandberg, Distributed fault detection for interconnected second-order systems, Automatica, 47 (2011), 2757-2764. doi: 10.1016/j.automatica.2011.09.011. Google Scholar

[13]

Q. ShenB. Jiang and P. Shi, Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multi-agent systems with time-varying actuator faults, IEEE Trans. Fuzzy Systems, 22 (2013), 494-504. doi: 10.1109/TFUZZ.2013.2260757. Google Scholar

[14]

Y. Shtessel, C. Edwards and L. Fridman, et al., Sliding Mode Control and Observation, Birkhauser, New York, 2014.Google Scholar

[15]

P. TichyP. Slechta and R. J. Staron, Multi-agent technology for fault tolerance and flexible control, IEEE Trans. Syst. Man Cybern. C, 36 (2006), 700-704. doi: 10.1109/TSMCC.2006.879381. Google Scholar

[16]

C. XuY. Zheng and H. Su, Containment Control for Coupled Harmonic Oscillators with Multiple Leaders under Directed Topology, Int. J. Control, 88 (2015), 248-255. doi: 10.1080/00207179.2014.944873. Google Scholar

[17]

H. YangM. Staroswiecki and B. Jiang, Fault tolerant cooperative control for a class of nonlinear multi-agent systems, Syst. Control Lett., 60 (2011), 271-277. doi: 10.1016/j.sysconle.2011.02.004. Google Scholar

[18]

J. ZhangA. K. Swain and S. K. Nguang, Robust sliding mode observer based fault estimation for certain class of uncertain nonlinear systems, Asian J. Control, 17 (2015), 1296-1309. doi: 10.1002/asjc.987. Google Scholar

[19]

Z. ZuoJ. Zhang and Y. Wang, Distributed consensus of linear multi-agent systems with fault tolerant control protocols, Proc. 33th IEEE Chinese Control Conf., (2014), 1656-1661. doi: 10.1109/ChiCC.2014.6896877. Google Scholar

Figure 1.  The system fault-tolerant control diagram for follower motor i
Figure 2.  Communication topology for a group of four followers with a virtual leader
Figure 3.  The unknown nonlinear failures estimation in both cases using sliding mode observer (7)
Figure 4.  Angular speed estimation using observer (7) with ${\theta ^{d1}} = 2t$(rad)
Figure 5.  Angular speed estimation using observer (7) with ${\theta ^{d2}} = 3\sin \left({\pi t/2}\right) $ (rad)
Figure 6.  Consensus tracking for rotor position and angular speed with protocol (15) when ${\theta ^{d1}} = 2t$(rad)
Figure 7.  Consensus tracking for rotor position and angular speed with protocol (15) when ${\theta ^{d2}} = 3\sin \left({\pi t/2}\right) $(rad)
Figure 8.  The unknown nonlinear failures estimation in both cases using sliding mode observer (7) (${F_{a1}},{\hat F_{a1}}$: 2/unit; ${F_{a2}},{\hat F_{a2}}$: 10/unit; ${F_{a3}},{\hat F_{a3}}$: 14.2/unit; ${F_{a4}},{\hat F_{a4}}$: 19/unit)
Figure 9.  Angular speed estimation using observer (7) with ${\theta ^{d1}} = 2t$(rad) ($\omega$: 10rad/s/unit)
Figure 10.  Angular speed estimation using observer (7) with ${\theta ^{d2}} = 3\sin \left( {\pi t} \right)$(rad) ($\omega$: 7.85rad/s/unit)
Figure 11.  Consensus tracking for rotor position and angular speed with protocol (15) when ${\theta ^{d1}} = 2t$(rad) ($\theta$: 90rad/unit, $\omega$: 10rad/s/unit)
Figure 12.  Consensus tracking for rotor position and angular speed with protocol (15) when ${\theta ^{d2}} = 3\sin \left( {\pi t} \right)$(rad) ($\theta$: 3.75rad/unit, $\omega$: 7.85rad/s/unit)
Table 1.  Parameters of Five Driven Motors
Motor.Motor 0(L)Motor 1Motor 2Motor 3Motor 4
R$(\Omega)$0.20.50.40.60.7
$K_t$0.0050.010.0080.0150.02
J$(k_g\cdot m^2)$0.020.030.0250.050.04
$K_e$0.10.20.20.180.25
Initial $\theta {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {rad} \right)$0.5-0.81.3-2.0-2.4
Motor.Motor 0(L)Motor 1Motor 2Motor 3Motor 4
R$(\Omega)$0.20.50.40.60.7
$K_t$0.0050.010.0080.0150.02
J$(k_g\cdot m^2)$0.020.030.0250.050.04
$K_e$0.10.20.20.180.25
Initial $\theta {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {rad} \right)$0.5-0.81.3-2.0-2.4
[1]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019120

[2]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2019096

[3]

Xiang-Sheng Wang, Luoyi Zhong. Ebola outbreak in West Africa: real-time estimation and multiple-wave prediction. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1055-1063. doi: 10.3934/mbe.2015.12.1055

[4]

Lingshuang Kong, Changjun Yu, Kok Lay Teo, Chunhua Yang. Robust real-time optimization for blending operation of alumina production. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1149-1167. doi: 10.3934/jimo.2016066

[5]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[6]

Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 211-224. doi: 10.3934/naco.2011.1.211

[7]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems & Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[8]

Thomas Demoor, Joris Walraevens, Dieter Fiems, Stijn De Vuyst, Herwig Bruneel. Influence of real-time queue capacity on system contents in DiffServ's expedited forwarding per-hop-behavior. Journal of Industrial & Management Optimization, 2010, 6 (3) : 587-602. doi: 10.3934/jimo.2010.6.587

[9]

Matthieu Canaud, Lyudmila Mihaylova, Jacques Sau, Nour-Eddin El Faouzi. Probability hypothesis density filtering for real-time traffic state estimation and prediction. Networks & Heterogeneous Media, 2013, 8 (3) : 825-842. doi: 10.3934/nhm.2013.8.825

[10]

Le Thi Hoai An, Tran Duc Quynh, Kondo Hloindo Adjallah. A difference of convex functions algorithm for optimal scheduling and real-time assignment of preventive maintenance jobs on parallel processors. Journal of Industrial & Management Optimization, 2014, 10 (1) : 243-258. doi: 10.3934/jimo.2014.10.243

[11]

Wei Huang, Ka-Fai Cedric Yiu, Henry Y. K. Lau. Semi-definite programming based approaches for real-time tractor localization in port container terminals. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 665-680. doi: 10.3934/naco.2013.3.665

[12]

Chengtao Yong, Yan Huo, Chunqiang Hu, Yanfei Lu, Guanlin Jing. A real-time aggregate data publishing scheme with adaptive ω-event differential privacy. Mathematical Foundations of Computing, 2018, 1 (3) : 295-309. doi: 10.3934/mfc.2018014

[13]

Tao Guan, Denghua Zhong, Bingyu Ren, Pu Cheng. Construction schedule optimization for high arch dams based on real-time interactive simulation. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1321-1342. doi: 10.3934/jimo.2015.11.1321

[14]

Yeming Dai, Yan Gao, Hongwei Gao, Hongbo Zhu, Lu Li. A real-time pricing scheme considering load uncertainty and price competition in smart grid market. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018178

[15]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[16]

Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431

[17]

Zhanyou Ma, Pengcheng Wang, Wuyi Yue. Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1467-1481. doi: 10.3934/jimo.2017002

[18]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[19]

Zhanqiang Huo, Wuyi Yue, Naishuo Tian, Shunfu Jin. Performance evaluation for the sleep mode in the IEEE 802.16e based on a queueing model with close-down time and multiple vacations. Journal of Industrial & Management Optimization, 2009, 5 (3) : 511-524. doi: 10.3934/jimo.2009.5.511

[20]

James H. Lambert, Benjamin L. Schulte, Nilesh N. Joshi. Multiple criteria intelligence tracking for detecting extremes from sequences of risk incidents. Journal of Industrial & Management Optimization, 2008, 4 (3) : 511-533. doi: 10.3934/jimo.2008.4.511

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (27)
  • HTML views (322)
  • Cited by (1)

Other articles
by authors

[Back to Top]