April  2017, 13(2): 931-945. doi: 10.3934/jimo.2016054

New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost

1. 

School of Business, East China University of Science and Technology, Shanghai 200237, China

2. 

The Johns Hopkins Carey Business School, Baltimore, MD 21202, USA

* Corresponding author: Arnab Bisi

Received  December 2014 Revised  June 2016 Published  August 2016

Fund Project: The first author is supported in part by the humanities and social sciences foundation of Chinese Ministry of Education under grant 12YJA630162.

We study a stochastic inventory model with a fixed setup cost and zero order lead time. In a finite-horizon lost sales model, when demand has a Polya frequency distribution (P Fn), we show that there are no more than a pre-determined number of minima of the cost function. Consequently, depending on the relative cost of lost sales and inventory holding cost, there can be as few as one local minimum. These properties have structural implications for the optimal policies and cost functions. A necessary condition for the results to hold for the backordered model has been explained. We further conduct a numerical study to validate our structural results.

Citation: Yanyi Xu, Arnab Bisi, Maqbool Dada. New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost. Journal of Industrial & Management Optimization, 2017, 13 (2) : 931-945. doi: 10.3934/jimo.2016054
References:
[1]

S. AhiskaS. AppajiR. King and D. Warsing, Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing, International Journal of Production Economics, 114 (2013), 485-496.  doi: 10.1016/j.ijpe.2013.03.021.  Google Scholar

[2]

M. BijvankS. Bhulai and T. Huh, Parametric replenishment policies for inventory systems with lost sales and fixed order cost, European Journal of Operational Research, 241 (2015), 381-390.  doi: 10.1016/j.ejor.2014.09.018.  Google Scholar

[3]

S. Bollapragada and T. Morton, Myopic Heuristics for the Random Yield Problem, Operations Research, 47 (1999), 713-722.  doi: 10.1287/opre.47.5.713.  Google Scholar

[4]

X. Chao and P. Zipkin, Optimal policy for a periodic-review inventory system under a supply capacity contract, Operations Research, 56 (2008), 59-68.  doi: 10.1287/opre.1070.0478.  Google Scholar

[5]

S. Chen and J. Xu, Note on the optimality of (s, S) policies for inventory systems with two demand classes, Operations Research Letters, 38 (2010), 450-453.  doi: 10.1016/j.orl.2010.07.005.  Google Scholar

[6]

L. Chen L. RobinsonL. ChenR. Roundy and R. Zhang, Technical note -New sufficient conditions for (s, S) policies to be optimal in systems with multiple uncertainties, Operations Research, 63 (2015), 186-197.  doi: 10.1287/opre.2014.1335.  Google Scholar

[7]

F. M. Cheng and S. P. Sethi, Optimality of state-dependent (s, S) policies in inventory models with Markov-modulated demand and lost sales, Production and Operations Management, 8 (1999), 183-192.   Google Scholar

[8]

R. Ehrhardt, (s, S) policies for a dynamic inventory model with stochastic lead times, Operations Research, 32 (1984), 121-132.  doi: 10.1287/opre.32.1.121.  Google Scholar

[9]

R. Ehrhardt, Easily computed approximations for (s, S) inventory system operating characteristics, Naval Research Logistics Quarterly, 32 (1985), 347-359.  doi: 10.1002/nav.3800320214.  Google Scholar

[10]

A. Federgruen and P. Zipkin, An efficient algorithm for computing optimal (s, S) policies, Operations Research, 34 (1984), 1268-1285.  doi: 10.1287/opre.32.6.1268.  Google Scholar

[11]

Y. Feng and B. Xiao, A new algorithm for computing optimal (s, S) policies in a stochastic single item/ location inventory system, IIE Transactions, 32 (2000), 1081-1090.  doi: 10.1080/07408170008967463.  Google Scholar

[12]

J. Freeland and E. Porteus, Evaluating the effectiveness of a new method for computing approximately optimal (s, S) inventory policies, Operations Research, 28 (1980), 353-364.   Google Scholar

[13]

E. Huggins and T. Olsen, Inventory control with generalized expediting, Operations Research, 58 (2010), 1414-1426.  doi: 10.1287/opre.1100.0820.  Google Scholar

[14]

D. Iglehart, Optimality of (s, S) policies in the infinite horizon dynamic inventory problems, Management Science, 9 (1963), 259-267.  doi: 10.1287/mnsc.9.2.259.  Google Scholar

[15]

Q. Li and P. Yu, Technical Note -On the quasiconcavity of lost-sales inventory models with fixed costs, Operations Research, 60 (2012), 286-291.  doi: 10.1287/opre.1110.1034.  Google Scholar

[16]

E. Porteus, On the optimality of generalized (s, S) policies, Management Science, 17 (1971), 411-426.  doi: 10.1287/mnsc.17.7.411.  Google Scholar

[17] E. Porteus, Foundations of Stochastic Inventory Theory, Stanford University Press, Stanford, CA, 2002.   Google Scholar
[18] H. Scarf, The optimality of (S, s) policies in dynamic inventory problems, Stanford University Press, Stanford, CA, 2002.   Google Scholar
[19]

I. Schoenberg, On Polya frequency functions Ⅰ. The totally positive functions and their Laplace transforms, Journal d'Analyse Mathematique, 1 (1951), 331-374.   Google Scholar

[20]

S. E. Shreve, Abbreviated proof (in the lost sales case) in D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic Press, New York, 1976. Google Scholar

[21]

B. Sivazlian, Dimensional and computational analysis in (s, S) inventory problems with gamma distributed demand, Management Science, 17 (1971), B307-B311.  doi: 10.1287/mnsc.17.6.B307.  Google Scholar

[22]

M. Sobel and R. Zhang, Inventory policies for systems with stochastic and deterministic demand, Operations Research, 49 (2001), 157-162.  doi: 10.1287/opre.49.1.157.11197.  Google Scholar

[23]

J. Tijms and H. Groenevelt, Approximations for (s, S) inventory systems with stochastic leadtimes and service level constraint, European Journal of Operational Research, 17 (1984), 175-190.  doi: 10.1016/0377-2217(84)90232-7.  Google Scholar

[24]

A. Veinott Jr., On the optimality of (s, S) inventory policies: New conditions and a new proof, Journal on Applied Mathematics, 14 (1966), 1067-1083.  doi: 10.1137/0114086.  Google Scholar

[25]

A. Veinott Jr. and H. Wagner, Computing optimal (s, S) inventory policies, Management Science, 11 (1965), 525-552.   Google Scholar

[26]

Y. Xu, New bounds of (s, S) policies in periodical review inventory systems, Journal of Shanghai University (English Edition), 14 (2010), 111-115.  doi: 10.1007/s11741-010-0207-2.  Google Scholar

[27]

Y. XuA. Bisi and M. Dada, New structural properties of (s, S) policies for inventory models with lost sales, Operations Research Letters, 38 (2010), 441-449.  doi: 10.1016/j.orl.2010.06.003.  Google Scholar

[28]

Y. Zheng and A. Federgruen, Finding optimal (s, S) policies is about as simple as evaluating a single policy, Operations Research, 39 (1991), 654-665.   Google Scholar

show all references

References:
[1]

S. AhiskaS. AppajiR. King and D. Warsing, Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing, International Journal of Production Economics, 114 (2013), 485-496.  doi: 10.1016/j.ijpe.2013.03.021.  Google Scholar

[2]

M. BijvankS. Bhulai and T. Huh, Parametric replenishment policies for inventory systems with lost sales and fixed order cost, European Journal of Operational Research, 241 (2015), 381-390.  doi: 10.1016/j.ejor.2014.09.018.  Google Scholar

[3]

S. Bollapragada and T. Morton, Myopic Heuristics for the Random Yield Problem, Operations Research, 47 (1999), 713-722.  doi: 10.1287/opre.47.5.713.  Google Scholar

[4]

X. Chao and P. Zipkin, Optimal policy for a periodic-review inventory system under a supply capacity contract, Operations Research, 56 (2008), 59-68.  doi: 10.1287/opre.1070.0478.  Google Scholar

[5]

S. Chen and J. Xu, Note on the optimality of (s, S) policies for inventory systems with two demand classes, Operations Research Letters, 38 (2010), 450-453.  doi: 10.1016/j.orl.2010.07.005.  Google Scholar

[6]

L. Chen L. RobinsonL. ChenR. Roundy and R. Zhang, Technical note -New sufficient conditions for (s, S) policies to be optimal in systems with multiple uncertainties, Operations Research, 63 (2015), 186-197.  doi: 10.1287/opre.2014.1335.  Google Scholar

[7]

F. M. Cheng and S. P. Sethi, Optimality of state-dependent (s, S) policies in inventory models with Markov-modulated demand and lost sales, Production and Operations Management, 8 (1999), 183-192.   Google Scholar

[8]

R. Ehrhardt, (s, S) policies for a dynamic inventory model with stochastic lead times, Operations Research, 32 (1984), 121-132.  doi: 10.1287/opre.32.1.121.  Google Scholar

[9]

R. Ehrhardt, Easily computed approximations for (s, S) inventory system operating characteristics, Naval Research Logistics Quarterly, 32 (1985), 347-359.  doi: 10.1002/nav.3800320214.  Google Scholar

[10]

A. Federgruen and P. Zipkin, An efficient algorithm for computing optimal (s, S) policies, Operations Research, 34 (1984), 1268-1285.  doi: 10.1287/opre.32.6.1268.  Google Scholar

[11]

Y. Feng and B. Xiao, A new algorithm for computing optimal (s, S) policies in a stochastic single item/ location inventory system, IIE Transactions, 32 (2000), 1081-1090.  doi: 10.1080/07408170008967463.  Google Scholar

[12]

J. Freeland and E. Porteus, Evaluating the effectiveness of a new method for computing approximately optimal (s, S) inventory policies, Operations Research, 28 (1980), 353-364.   Google Scholar

[13]

E. Huggins and T. Olsen, Inventory control with generalized expediting, Operations Research, 58 (2010), 1414-1426.  doi: 10.1287/opre.1100.0820.  Google Scholar

[14]

D. Iglehart, Optimality of (s, S) policies in the infinite horizon dynamic inventory problems, Management Science, 9 (1963), 259-267.  doi: 10.1287/mnsc.9.2.259.  Google Scholar

[15]

Q. Li and P. Yu, Technical Note -On the quasiconcavity of lost-sales inventory models with fixed costs, Operations Research, 60 (2012), 286-291.  doi: 10.1287/opre.1110.1034.  Google Scholar

[16]

E. Porteus, On the optimality of generalized (s, S) policies, Management Science, 17 (1971), 411-426.  doi: 10.1287/mnsc.17.7.411.  Google Scholar

[17] E. Porteus, Foundations of Stochastic Inventory Theory, Stanford University Press, Stanford, CA, 2002.   Google Scholar
[18] H. Scarf, The optimality of (S, s) policies in dynamic inventory problems, Stanford University Press, Stanford, CA, 2002.   Google Scholar
[19]

I. Schoenberg, On Polya frequency functions Ⅰ. The totally positive functions and their Laplace transforms, Journal d'Analyse Mathematique, 1 (1951), 331-374.   Google Scholar

[20]

S. E. Shreve, Abbreviated proof (in the lost sales case) in D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic Press, New York, 1976. Google Scholar

[21]

B. Sivazlian, Dimensional and computational analysis in (s, S) inventory problems with gamma distributed demand, Management Science, 17 (1971), B307-B311.  doi: 10.1287/mnsc.17.6.B307.  Google Scholar

[22]

M. Sobel and R. Zhang, Inventory policies for systems with stochastic and deterministic demand, Operations Research, 49 (2001), 157-162.  doi: 10.1287/opre.49.1.157.11197.  Google Scholar

[23]

J. Tijms and H. Groenevelt, Approximations for (s, S) inventory systems with stochastic leadtimes and service level constraint, European Journal of Operational Research, 17 (1984), 175-190.  doi: 10.1016/0377-2217(84)90232-7.  Google Scholar

[24]

A. Veinott Jr., On the optimality of (s, S) inventory policies: New conditions and a new proof, Journal on Applied Mathematics, 14 (1966), 1067-1083.  doi: 10.1137/0114086.  Google Scholar

[25]

A. Veinott Jr. and H. Wagner, Computing optimal (s, S) inventory policies, Management Science, 11 (1965), 525-552.   Google Scholar

[26]

Y. Xu, New bounds of (s, S) policies in periodical review inventory systems, Journal of Shanghai University (English Edition), 14 (2010), 111-115.  doi: 10.1007/s11741-010-0207-2.  Google Scholar

[27]

Y. XuA. Bisi and M. Dada, New structural properties of (s, S) policies for inventory models with lost sales, Operations Research Letters, 38 (2010), 441-449.  doi: 10.1016/j.orl.2010.06.003.  Google Scholar

[28]

Y. Zheng and A. Federgruen, Finding optimal (s, S) policies is about as simple as evaluating a single policy, Operations Research, 39 (1991), 654-665.   Google Scholar

Cost and Model Parameters
$K$ = fixed setup cost
$c$ = unit variable ordering cost
$h$ = unit inventory holding cost
$l$ = unit lost sales cost ($l > c$)
$b$ = unit backorder cost
$\alpha$ = discount factor ($0<\alpha\le 1$)
$T$ = time horizon
Cost and Model Parameters
$K$ = fixed setup cost
$c$ = unit variable ordering cost
$h$ = unit inventory holding cost
$l$ = unit lost sales cost ($l > c$)
$b$ = unit backorder cost
$\alpha$ = discount factor ($0<\alpha\le 1$)
$T$ = time horizon
Demand Information
$\xi_t$ = the random observation of demand in period $t$, $t = 1, 2,\dots, T$
$f(\cdot)$= the probability density function (PDF) of demand in each period
$F(\cdot)$= the cumulative distribution function (CDF) of demand in each period
Demand Information
$\xi_t$ = the random observation of demand in period $t$, $t = 1, 2,\dots, T$
$f(\cdot)$= the probability density function (PDF) of demand in each period
$F(\cdot)$= the cumulative distribution function (CDF) of demand in each period
Decision Variables
$s_t$ = optimal reorder level in period $t$
$S_t$ = optimal order-up-to level in period $t$
Decision Variables
$s_t$ = optimal reorder level in period $t$
$S_t$ = optimal order-up-to level in period $t$
Cost Functions
$L(\cdot)$ = one period inventory holding and shortage penalty cost function
$V_t(x)$ = total minimal expected cost from period $t$ onwards ($t-1,\dots, 2, 1$), given that the on-hand inventory at the beginning of period $t$ is $x$
$G_t(y)$ = total expected cost from period t onwards after inventory level is increased to $y$
Cost Functions
$L(\cdot)$ = one period inventory holding and shortage penalty cost function
$V_t(x)$ = total minimal expected cost from period $t$ onwards ($t-1,\dots, 2, 1$), given that the on-hand inventory at the beginning of period $t$ is $x$
$G_t(y)$ = total expected cost from period t onwards after inventory level is increased to $y$
Other Useful Functions
$\delta(z) = \left\{ \begin{array}{lc} 1&\textrm{if } z > 0 \\ 0& \textrm{if } z = 0 \end{array} \right. $, the indicator function for ordering decisions
$x^+$ = $\max\{ x, 0 \}$
Other Useful Functions
$\delta(z) = \left\{ \begin{array}{lc} 1&\textrm{if } z > 0 \\ 0& \textrm{if } z = 0 \end{array} \right. $, the indicator function for ordering decisions
$x^+$ = $\max\{ x, 0 \}$
Table 1.  Optimal Solutions for the Case with Unit Lost Sales Cost l = 2
$K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$
0.111.4019733492.0450880070.6431147212.892765731
22.2798674863.1443524950.8459910055.161645538
32.2983614903.4535000001.1551385107.213139600
42.2846355043.4472300001.1625944969.062221220
52.2874172753.4492500001.16183272510.725835800
0.510.6661456022.0450880071.4789424042.892765731
21.6311338993.4343347201.8032008215.280907719
31.5892114204.2151518002.6328846667.499670690
41.5226713384.3995400002.8768686629.526311140
51.5419347914.3511500002.80921520911.341494260
110.1075586372.0450880071.9375293702.892765731
21.2450666783.6237024242.3786357465.361056167
31.2429952004.6997000003.4567048007.499670690
41.1182851455.2631100004.1448248559.873385400
51.1091581735.2438500004.13469182711.838495150
$K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$
0.111.4019733492.0450880070.6431147212.892765731
22.2798674863.1443524950.8459910055.161645538
32.2983614903.4535000001.1551385107.213139600
42.2846355043.4472300001.1625944969.062221220
52.2874172753.4492500001.16183272510.725835800
0.510.6661456022.0450880071.4789424042.892765731
21.6311338993.4343347201.8032008215.280907719
31.5892114204.2151518002.6328846667.499670690
41.5226713384.3995400002.8768686629.526311140
51.5419347914.3511500002.80921520911.341494260
110.1075586372.0450880071.9375293702.892765731
21.2450666783.6237024242.3786357465.361056167
31.2429952004.6997000003.4567048007.499670690
41.1182851455.2631100004.1448248559.873385400
51.1091581735.2438500004.13469182711.838495150
Table 2.  Optimal Solutions for the Case with Unit Lost Sales Cost l = 10
$K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$
0.113.8103233464.3805271920.5702038464.318148680
24.7978055095.5689970000.7711914916.934754800
34.8641617535.9284125001.0642507479.291513170
44.8449580185.9243120001.07935398211.416826560
54.8481855565.9269060001.07872044413.328890410
511.4775800904.3805271922.9029471024.318148680
22.8355865196.5558410003.7202544817.428294760
33.1477203048.3107250005.16300469610.437563500
43.0191716969.7800200006.76084830413.352972400
52.91246570710.9802600008.06779429316.156118600
1010.6702341594.3805271923.7102930064.318148680
22.2111207426.7556950004.5445712587.538793306
32.7239584508.7389200006.01496155010.701657500
42.63742868710.4760200007.83859131313.811397880
52.53063377012.0159400009.48530623016.854614980
1510.0758363094.3805271924.3046908834.318148680
21.7755795176.8511500005.0755704837.592848600
32.4171473038.9497250006.53257769710.836869060
42.38295489110.8186000008.43564510914.050696010
52.28291395612.51312000010.23020604017.220767220
$K$ $t$ Optimal Reoder Point($s_t$) Optimal Order-up-to Level($s_t$) $\Delta_t=S_t-s_t$ Optimal Cost $G_t(S_t)$
0.113.8103233464.3805271920.5702038464.318148680
24.7978055095.5689970000.7711914916.934754800
34.8641617535.9284125001.0642507479.291513170
44.8449580185.9243120001.07935398211.416826560
54.8481855565.9269060001.07872044413.328890410
511.4775800904.3805271922.9029471024.318148680
22.8355865196.5558410003.7202544817.428294760
33.1477203048.3107250005.16300469610.437563500
43.0191716969.7800200006.76084830413.352972400
52.91246570710.9802600008.06779429316.156118600
1010.6702341594.3805271923.7102930064.318148680
22.2111207426.7556950004.5445712587.538793306
32.7239584508.7389200006.01496155010.701657500
42.63742868710.4760200007.83859131313.811397880
52.53063377012.0159400009.48530623016.854614980
1510.0758363094.3805271924.3046908834.318148680
21.7755795176.8511500005.0755704837.592848600
32.4171473038.9497250006.53257769710.836869060
42.38295489110.8186000008.43564510914.050696010
52.28291395612.51312000010.23020604017.220767220
[1]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[2]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021079

[3]

Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021036

[4]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[5]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[6]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[7]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[8]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[9]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[10]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[11]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[12]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[13]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[14]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[15]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[16]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021054

[19]

Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021035

[20]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (56)
  • HTML views (340)
  • Cited by (1)

Other articles
by authors

[Back to Top]