-
Previous Article
An optimal trade-off model for portfolio selection with sensitivity of parameters
- JIMO Home
- This Issue
-
Next Article
Distributed fault-tolerant consensus tracking for networked non-identical motors
New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost
1. | School of Business, East China University of Science and Technology, Shanghai 200237, China |
2. | The Johns Hopkins Carey Business School, Baltimore, MD 21202, USA |
We study a stochastic inventory model with a fixed setup cost and zero order lead time. In a finite-horizon lost sales model, when demand has a Polya frequency distribution (P Fn), we show that there are no more than a pre-determined number of minima of the cost function. Consequently, depending on the relative cost of lost sales and inventory holding cost, there can be as few as one local minimum. These properties have structural implications for the optimal policies and cost functions. A necessary condition for the results to hold for the backordered model has been explained. We further conduct a numerical study to validate our structural results.
References:
[1] |
S. Ahiska, S. Appaji, R. King and D. Warsing,
Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing, International Journal of Production Economics, 114 (2013), 485-496.
doi: 10.1016/j.ijpe.2013.03.021. |
[2] |
M. Bijvank, S. Bhulai and T. Huh,
Parametric replenishment policies for inventory systems with lost sales and fixed order cost, European Journal of Operational Research, 241 (2015), 381-390.
doi: 10.1016/j.ejor.2014.09.018. |
[3] |
S. Bollapragada and T. Morton,
Myopic Heuristics for the Random Yield Problem, Operations Research, 47 (1999), 713-722.
doi: 10.1287/opre.47.5.713. |
[4] |
X. Chao and P. Zipkin,
Optimal policy for a periodic-review inventory system under a supply capacity contract, Operations Research, 56 (2008), 59-68.
doi: 10.1287/opre.1070.0478. |
[5] |
S. Chen and J. Xu,
Note on the optimality of (s, S) policies for inventory systems with two demand classes, Operations Research Letters, 38 (2010), 450-453.
doi: 10.1016/j.orl.2010.07.005. |
[6] |
L. Chen L. Robinson, L. Chen, R. Roundy and R. Zhang,
Technical note -New sufficient conditions for (s, S) policies to be optimal in systems with multiple uncertainties, Operations Research, 63 (2015), 186-197.
doi: 10.1287/opre.2014.1335. |
[7] |
F. M. Cheng and S. P. Sethi, Optimality of state-dependent (s, S) policies in inventory models with Markov-modulated demand and lost sales, Production and Operations Management, 8 (1999), 183-192. Google Scholar |
[8] |
R. Ehrhardt,
(s, S) policies for a dynamic inventory model with stochastic lead times, Operations Research, 32 (1984), 121-132.
doi: 10.1287/opre.32.1.121. |
[9] |
R. Ehrhardt,
Easily computed approximations for (s, S) inventory system operating characteristics, Naval Research Logistics Quarterly, 32 (1985), 347-359.
doi: 10.1002/nav.3800320214. |
[10] |
A. Federgruen and P. Zipkin,
An efficient algorithm for computing optimal (s, S) policies, Operations Research, 34 (1984), 1268-1285.
doi: 10.1287/opre.32.6.1268. |
[11] |
Y. Feng and B. Xiao,
A new algorithm for computing optimal (s, S) policies in a stochastic single item/ location inventory system, IIE Transactions, 32 (2000), 1081-1090.
doi: 10.1080/07408170008967463. |
[12] |
J. Freeland and E. Porteus, Evaluating the effectiveness of a new method for computing approximately optimal (s, S) inventory policies, Operations Research, 28 (1980), 353-364. Google Scholar |
[13] |
E. Huggins and T. Olsen,
Inventory control with generalized expediting, Operations Research, 58 (2010), 1414-1426.
doi: 10.1287/opre.1100.0820. |
[14] |
D. Iglehart,
Optimality of (s, S) policies in the infinite horizon dynamic inventory problems, Management Science, 9 (1963), 259-267.
doi: 10.1287/mnsc.9.2.259. |
[15] |
Q. Li and P. Yu,
Technical Note -On the quasiconcavity of lost-sales inventory models with fixed costs, Operations Research, 60 (2012), 286-291.
doi: 10.1287/opre.1110.1034. |
[16] |
E. Porteus,
On the optimality of generalized (s, S) policies, Management Science, 17 (1971), 411-426.
doi: 10.1287/mnsc.17.7.411. |
[17] | E. Porteus, Foundations of Stochastic Inventory Theory, Stanford University Press, Stanford, CA, 2002. Google Scholar |
[18] |
H. Scarf, The optimality of (S, s) policies in dynamic inventory problems, Stanford University Press, Stanford, CA, 2002.
![]() |
[19] |
I. Schoenberg,
On Polya frequency functions Ⅰ. The totally positive functions and their Laplace transforms, Journal d'Analyse Mathematique, 1 (1951), 331-374.
|
[20] |
S. E. Shreve, Abbreviated proof (in the lost sales case) in D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic Press, New York, 1976. Google Scholar |
[21] |
B. Sivazlian,
Dimensional and computational analysis in (s, S) inventory problems with gamma distributed demand, Management Science, 17 (1971), B307-B311.
doi: 10.1287/mnsc.17.6.B307. |
[22] |
M. Sobel and R. Zhang,
Inventory policies for systems with stochastic and deterministic demand, Operations Research, 49 (2001), 157-162.
doi: 10.1287/opre.49.1.157.11197. |
[23] |
J. Tijms and H. Groenevelt,
Approximations for (s, S) inventory systems with stochastic leadtimes and service level constraint, European Journal of Operational Research, 17 (1984), 175-190.
doi: 10.1016/0377-2217(84)90232-7. |
[24] |
A. Veinott Jr.,
On the optimality of (s, S) inventory policies: New conditions and a new proof, Journal on Applied Mathematics, 14 (1966), 1067-1083.
doi: 10.1137/0114086. |
[25] |
A. Veinott Jr. and H. Wagner,
Computing optimal (s, S) inventory policies, Management Science, 11 (1965), 525-552.
|
[26] |
Y. Xu,
New bounds of (s, S) policies in periodical review inventory systems, Journal of Shanghai University (English Edition), 14 (2010), 111-115.
doi: 10.1007/s11741-010-0207-2. |
[27] |
Y. Xu, A. Bisi and M. Dada,
New structural properties of (s, S) policies for inventory models with lost sales, Operations Research Letters, 38 (2010), 441-449.
doi: 10.1016/j.orl.2010.06.003. |
[28] |
Y. Zheng and A. Federgruen, Finding optimal (s, S) policies is about as simple as evaluating a single policy, Operations Research, 39 (1991), 654-665. Google Scholar |
show all references
References:
[1] |
S. Ahiska, S. Appaji, R. King and D. Warsing,
Markov decision process-based policy characterization approach for a stochastic inventory control problem with unreliable sourcing, International Journal of Production Economics, 114 (2013), 485-496.
doi: 10.1016/j.ijpe.2013.03.021. |
[2] |
M. Bijvank, S. Bhulai and T. Huh,
Parametric replenishment policies for inventory systems with lost sales and fixed order cost, European Journal of Operational Research, 241 (2015), 381-390.
doi: 10.1016/j.ejor.2014.09.018. |
[3] |
S. Bollapragada and T. Morton,
Myopic Heuristics for the Random Yield Problem, Operations Research, 47 (1999), 713-722.
doi: 10.1287/opre.47.5.713. |
[4] |
X. Chao and P. Zipkin,
Optimal policy for a periodic-review inventory system under a supply capacity contract, Operations Research, 56 (2008), 59-68.
doi: 10.1287/opre.1070.0478. |
[5] |
S. Chen and J. Xu,
Note on the optimality of (s, S) policies for inventory systems with two demand classes, Operations Research Letters, 38 (2010), 450-453.
doi: 10.1016/j.orl.2010.07.005. |
[6] |
L. Chen L. Robinson, L. Chen, R. Roundy and R. Zhang,
Technical note -New sufficient conditions for (s, S) policies to be optimal in systems with multiple uncertainties, Operations Research, 63 (2015), 186-197.
doi: 10.1287/opre.2014.1335. |
[7] |
F. M. Cheng and S. P. Sethi, Optimality of state-dependent (s, S) policies in inventory models with Markov-modulated demand and lost sales, Production and Operations Management, 8 (1999), 183-192. Google Scholar |
[8] |
R. Ehrhardt,
(s, S) policies for a dynamic inventory model with stochastic lead times, Operations Research, 32 (1984), 121-132.
doi: 10.1287/opre.32.1.121. |
[9] |
R. Ehrhardt,
Easily computed approximations for (s, S) inventory system operating characteristics, Naval Research Logistics Quarterly, 32 (1985), 347-359.
doi: 10.1002/nav.3800320214. |
[10] |
A. Federgruen and P. Zipkin,
An efficient algorithm for computing optimal (s, S) policies, Operations Research, 34 (1984), 1268-1285.
doi: 10.1287/opre.32.6.1268. |
[11] |
Y. Feng and B. Xiao,
A new algorithm for computing optimal (s, S) policies in a stochastic single item/ location inventory system, IIE Transactions, 32 (2000), 1081-1090.
doi: 10.1080/07408170008967463. |
[12] |
J. Freeland and E. Porteus, Evaluating the effectiveness of a new method for computing approximately optimal (s, S) inventory policies, Operations Research, 28 (1980), 353-364. Google Scholar |
[13] |
E. Huggins and T. Olsen,
Inventory control with generalized expediting, Operations Research, 58 (2010), 1414-1426.
doi: 10.1287/opre.1100.0820. |
[14] |
D. Iglehart,
Optimality of (s, S) policies in the infinite horizon dynamic inventory problems, Management Science, 9 (1963), 259-267.
doi: 10.1287/mnsc.9.2.259. |
[15] |
Q. Li and P. Yu,
Technical Note -On the quasiconcavity of lost-sales inventory models with fixed costs, Operations Research, 60 (2012), 286-291.
doi: 10.1287/opre.1110.1034. |
[16] |
E. Porteus,
On the optimality of generalized (s, S) policies, Management Science, 17 (1971), 411-426.
doi: 10.1287/mnsc.17.7.411. |
[17] | E. Porteus, Foundations of Stochastic Inventory Theory, Stanford University Press, Stanford, CA, 2002. Google Scholar |
[18] |
H. Scarf, The optimality of (S, s) policies in dynamic inventory problems, Stanford University Press, Stanford, CA, 2002.
![]() |
[19] |
I. Schoenberg,
On Polya frequency functions Ⅰ. The totally positive functions and their Laplace transforms, Journal d'Analyse Mathematique, 1 (1951), 331-374.
|
[20] |
S. E. Shreve, Abbreviated proof (in the lost sales case) in D. P. Bertsekas, Dynamic Programming and Stochastic Control, Academic Press, New York, 1976. Google Scholar |
[21] |
B. Sivazlian,
Dimensional and computational analysis in (s, S) inventory problems with gamma distributed demand, Management Science, 17 (1971), B307-B311.
doi: 10.1287/mnsc.17.6.B307. |
[22] |
M. Sobel and R. Zhang,
Inventory policies for systems with stochastic and deterministic demand, Operations Research, 49 (2001), 157-162.
doi: 10.1287/opre.49.1.157.11197. |
[23] |
J. Tijms and H. Groenevelt,
Approximations for (s, S) inventory systems with stochastic leadtimes and service level constraint, European Journal of Operational Research, 17 (1984), 175-190.
doi: 10.1016/0377-2217(84)90232-7. |
[24] |
A. Veinott Jr.,
On the optimality of (s, S) inventory policies: New conditions and a new proof, Journal on Applied Mathematics, 14 (1966), 1067-1083.
doi: 10.1137/0114086. |
[25] |
A. Veinott Jr. and H. Wagner,
Computing optimal (s, S) inventory policies, Management Science, 11 (1965), 525-552.
|
[26] |
Y. Xu,
New bounds of (s, S) policies in periodical review inventory systems, Journal of Shanghai University (English Edition), 14 (2010), 111-115.
doi: 10.1007/s11741-010-0207-2. |
[27] |
Y. Xu, A. Bisi and M. Dada,
New structural properties of (s, S) policies for inventory models with lost sales, Operations Research Letters, 38 (2010), 441-449.
doi: 10.1016/j.orl.2010.06.003. |
[28] |
Y. Zheng and A. Federgruen, Finding optimal (s, S) policies is about as simple as evaluating a single policy, Operations Research, 39 (1991), 654-665. Google Scholar |
Cost and Model Parameters |
Cost and Model Parameters |
Demand Information |
Demand Information |
Decision Variables |
Decision Variables |
Cost Functions |
Cost Functions |
Other Useful Functions |
Other Useful Functions |
Optimal Reoder Point( | Optimal Order-up-to Level( | Optimal Cost | |||
0.1 | 1 | 1.401973349 | 2.045088007 | 0.643114721 | 2.892765731 |
2 | 2.279867486 | 3.144352495 | 0.845991005 | 5.161645538 | |
3 | 2.298361490 | 3.453500000 | 1.155138510 | 7.213139600 | |
4 | 2.284635504 | 3.447230000 | 1.162594496 | 9.062221220 | |
5 | 2.287417275 | 3.449250000 | 1.161832725 | 10.725835800 | |
0.5 | 1 | 0.666145602 | 2.045088007 | 1.478942404 | 2.892765731 |
2 | 1.631133899 | 3.434334720 | 1.803200821 | 5.280907719 | |
3 | 1.589211420 | 4.215151800 | 2.632884666 | 7.499670690 | |
4 | 1.522671338 | 4.399540000 | 2.876868662 | 9.526311140 | |
5 | 1.541934791 | 4.351150000 | 2.809215209 | 11.341494260 | |
1 | 1 | 0.107558637 | 2.045088007 | 1.937529370 | 2.892765731 |
2 | 1.245066678 | 3.623702424 | 2.378635746 | 5.361056167 | |
3 | 1.242995200 | 4.699700000 | 3.456704800 | 7.499670690 | |
4 | 1.118285145 | 5.263110000 | 4.144824855 | 9.873385400 | |
5 | 1.109158173 | 5.243850000 | 4.134691827 | 11.838495150 |
Optimal Reoder Point( | Optimal Order-up-to Level( | Optimal Cost | |||
0.1 | 1 | 1.401973349 | 2.045088007 | 0.643114721 | 2.892765731 |
2 | 2.279867486 | 3.144352495 | 0.845991005 | 5.161645538 | |
3 | 2.298361490 | 3.453500000 | 1.155138510 | 7.213139600 | |
4 | 2.284635504 | 3.447230000 | 1.162594496 | 9.062221220 | |
5 | 2.287417275 | 3.449250000 | 1.161832725 | 10.725835800 | |
0.5 | 1 | 0.666145602 | 2.045088007 | 1.478942404 | 2.892765731 |
2 | 1.631133899 | 3.434334720 | 1.803200821 | 5.280907719 | |
3 | 1.589211420 | 4.215151800 | 2.632884666 | 7.499670690 | |
4 | 1.522671338 | 4.399540000 | 2.876868662 | 9.526311140 | |
5 | 1.541934791 | 4.351150000 | 2.809215209 | 11.341494260 | |
1 | 1 | 0.107558637 | 2.045088007 | 1.937529370 | 2.892765731 |
2 | 1.245066678 | 3.623702424 | 2.378635746 | 5.361056167 | |
3 | 1.242995200 | 4.699700000 | 3.456704800 | 7.499670690 | |
4 | 1.118285145 | 5.263110000 | 4.144824855 | 9.873385400 | |
5 | 1.109158173 | 5.243850000 | 4.134691827 | 11.838495150 |
Optimal Reoder Point( | Optimal Order-up-to Level( | Optimal Cost | |||
0.1 | 1 | 3.810323346 | 4.380527192 | 0.570203846 | 4.318148680 |
2 | 4.797805509 | 5.568997000 | 0.771191491 | 6.934754800 | |
3 | 4.864161753 | 5.928412500 | 1.064250747 | 9.291513170 | |
4 | 4.844958018 | 5.924312000 | 1.079353982 | 11.416826560 | |
5 | 4.848185556 | 5.926906000 | 1.078720444 | 13.328890410 | |
5 | 1 | 1.477580090 | 4.380527192 | 2.902947102 | 4.318148680 |
2 | 2.835586519 | 6.555841000 | 3.720254481 | 7.428294760 | |
3 | 3.147720304 | 8.310725000 | 5.163004696 | 10.437563500 | |
4 | 3.019171696 | 9.780020000 | 6.760848304 | 13.352972400 | |
5 | 2.912465707 | 10.980260000 | 8.067794293 | 16.156118600 | |
10 | 1 | 0.670234159 | 4.380527192 | 3.710293006 | 4.318148680 |
2 | 2.211120742 | 6.755695000 | 4.544571258 | 7.538793306 | |
3 | 2.723958450 | 8.738920000 | 6.014961550 | 10.701657500 | |
4 | 2.637428687 | 10.476020000 | 7.838591313 | 13.811397880 | |
5 | 2.530633770 | 12.015940000 | 9.485306230 | 16.854614980 | |
15 | 1 | 0.075836309 | 4.380527192 | 4.304690883 | 4.318148680 |
2 | 1.775579517 | 6.851150000 | 5.075570483 | 7.592848600 | |
3 | 2.417147303 | 8.949725000 | 6.532577697 | 10.836869060 | |
4 | 2.382954891 | 10.818600000 | 8.435645109 | 14.050696010 | |
5 | 2.282913956 | 12.513120000 | 10.230206040 | 17.220767220 |
Optimal Reoder Point( | Optimal Order-up-to Level( | Optimal Cost | |||
0.1 | 1 | 3.810323346 | 4.380527192 | 0.570203846 | 4.318148680 |
2 | 4.797805509 | 5.568997000 | 0.771191491 | 6.934754800 | |
3 | 4.864161753 | 5.928412500 | 1.064250747 | 9.291513170 | |
4 | 4.844958018 | 5.924312000 | 1.079353982 | 11.416826560 | |
5 | 4.848185556 | 5.926906000 | 1.078720444 | 13.328890410 | |
5 | 1 | 1.477580090 | 4.380527192 | 2.902947102 | 4.318148680 |
2 | 2.835586519 | 6.555841000 | 3.720254481 | 7.428294760 | |
3 | 3.147720304 | 8.310725000 | 5.163004696 | 10.437563500 | |
4 | 3.019171696 | 9.780020000 | 6.760848304 | 13.352972400 | |
5 | 2.912465707 | 10.980260000 | 8.067794293 | 16.156118600 | |
10 | 1 | 0.670234159 | 4.380527192 | 3.710293006 | 4.318148680 |
2 | 2.211120742 | 6.755695000 | 4.544571258 | 7.538793306 | |
3 | 2.723958450 | 8.738920000 | 6.014961550 | 10.701657500 | |
4 | 2.637428687 | 10.476020000 | 7.838591313 | 13.811397880 | |
5 | 2.530633770 | 12.015940000 | 9.485306230 | 16.854614980 | |
15 | 1 | 0.075836309 | 4.380527192 | 4.304690883 | 4.318148680 |
2 | 1.775579517 | 6.851150000 | 5.075570483 | 7.592848600 | |
3 | 2.417147303 | 8.949725000 | 6.532577697 | 10.836869060 | |
4 | 2.382954891 | 10.818600000 | 8.435645109 | 14.050696010 | |
5 | 2.282913956 | 12.513120000 | 10.230206040 | 17.220767220 |
[1] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[2] |
Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021079 |
[3] |
Gaurav Nagpal, Udayan Chanda, Nitant Upasani. Inventory replenishment policies for two successive generations price-sensitive technology products. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021036 |
[4] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[5] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[6] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
[7] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[8] |
Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021062 |
[9] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[10] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021004 |
[13] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[14] |
Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021077 |
[15] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[16] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[17] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[18] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[19] |
Azeddine Elmajidi, Elhoussine Elmazoudi, Jamila Elalami, Noureddine Elalami. Dependent delay stability characterization for a polynomial T-S Carbon Dioxide model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021035 |
[20] |
Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]