• Previous Article
    Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times
  • JIMO Home
  • This Issue
  • Next Article
    An optimal trade-off model for portfolio selection with sensitivity of parameters
April  2017, 13(2): 967-975. doi: 10.3934/jimo.2016056

Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities

a. 

College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

b. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

1Corresponding author

Received  December 2014 Revised  June 2016 Published  August 2016

In this paper, by using the nonlinear scalarization method and under some new assumptions, which do not involve any information on the solution set, we establish the continuity of solution mappings of parametric generalized non-weak vector Ky Fan inequality with moving cones. The results are new and improve corresponding ones in the literature. Some examples are given to illustrate our results.

Citation: Yangdong Xu, Shengjie Li. Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities. Journal of Industrial & Management Optimization, 2017, 13 (2) : 967-975. doi: 10.3934/jimo.2016056
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems, J. Global Optim., 46 (2010), 247-259.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[3]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 2006.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boy1, London, 1963, Dover Publications, Inc., Mineola, NY, 1997.  Google Scholar

[5]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Global Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[6]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[7]

G. Y. ChenX. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. Global Optim., 32 (2005), 451-466.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Global Optim., 32 (2005), 543-550.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extension of two fixed point theorems of F.E., Browder, Math. Z., 112 (1969), 234-240.  doi: 10.1007/BF01110225.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60 (1989), 19-31.  doi: 10.1007/BF00938796.  Google Scholar

[11]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[12]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[14]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett., 28 (2014), 38-41.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[15]

N. J. HuangJ. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[16]

S. J. LiG. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar

[17]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[18]

S. J. LiH. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems, Bull. Aust. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[19]

Z. Y. Peng and S. S. Chang, On the lower semicontinuity of the set of efficient solutions to parametric generalized systems, Optim. Lett., 8 (2014), 159-169.  doi: 10.1007/s11590-012-0544-y.  Google Scholar

[20]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[21]

P. H. Sach, New nonlinear scalarization functions and applications, Nonlinear Anal., 75 (2012), 2281-2292.  doi: 10.1016/j.na.2011.10.028.  Google Scholar

[22]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some parametric non-weak vector Ky Fan inequalities, J. Global Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[23]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[24]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl., 294 (2004), 699-711.  doi: 10.1016/j.jmaa.2004.03.014.  Google Scholar

[2]

L. Q. Anh and P. Q. Khanh, Continuity of solution maps of parametric quasiequilibrium problems, J. Global Optim., 46 (2010), 247-259.  doi: 10.1007/s10898-009-9422-2.  Google Scholar

[3]

J. -P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 2006.  Google Scholar

[4]

C. Berge, Topological Spaces, Oliver and Boy1, London, 1963, Dover Publications, Inc., Mineola, NY, 1997.  Google Scholar

[5]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Global Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[6]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[7]

G. Y. ChenX. Q. Yang and H. Yu, A nonlinear scalarization function and generalized quasi-vector equilibrium problems, J. Global Optim., 32 (2005), 451-466.  doi: 10.1007/s10898-003-2683-2.  Google Scholar

[8]

Y. H. Cheng and D. L. Zhu, Global stability results for the weak vector variational inequality, J. Global Optim., 32 (2005), 543-550.  doi: 10.1007/s10898-004-2692-9.  Google Scholar

[9]

K. Fan, Extension of two fixed point theorems of F.E., Browder, Math. Z., 112 (1969), 234-240.  doi: 10.1007/BF01110225.  Google Scholar

[10]

F. Ferro, A minimax theorem for vector-valued functions, J. Optim. Theory Appl., 60 (1989), 19-31.  doi: 10.1007/BF00938796.  Google Scholar

[11]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, Kluwer Academic Publishers, Dordrecht, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[12]

X. H. Gong, Continuity of the solution set to parametric weak vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[13]

X. H. Gong and J. C. Yao, Lower semicontinuity of the set of efficient solutions for generalized systems, J. Optim. Theory Appl., 138 (2008), 197-205.  doi: 10.1007/s10957-008-9379-1.  Google Scholar

[14]

Y. Han and X. H. Gong, Lower semicontinuity of solution mapping to parametric generalized strong vector equilibrium problems, Appl. Math. Lett., 28 (2014), 38-41.  doi: 10.1016/j.aml.2013.09.006.  Google Scholar

[15]

N. J. HuangJ. Li and H. B. Thompson, Stability for parametric implicit vector equilibrium problems, Math. Comput. Model., 43 (2006), 1267-1274.  doi: 10.1016/j.mcm.2005.06.010.  Google Scholar

[16]

S. J. LiG. Y. Chen and K. L. Teo, On the stability of generalized vector quasivariational inequality problems, J. Optim. Theory Appl., 113 (2002), 283-295.  doi: 10.1023/A:1014830925232.  Google Scholar

[17]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[18]

S. J. LiH. M. Liu and C. R. Chen, Lower semicomtinuity of parametric generalized weak vector equilibrium problems, Bull. Aust. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[19]

Z. Y. Peng and S. S. Chang, On the lower semicontinuity of the set of efficient solutions to parametric generalized systems, Optim. Lett., 8 (2014), 159-169.  doi: 10.1007/s11590-012-0544-y.  Google Scholar

[20]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[21]

P. H. Sach, New nonlinear scalarization functions and applications, Nonlinear Anal., 75 (2012), 2281-2292.  doi: 10.1016/j.na.2011.10.028.  Google Scholar

[22]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some parametric non-weak vector Ky Fan inequalities, J. Global Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[23]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[24]

Q. L. Wang and S. J. Li, Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem, J. Ind. Manag. Optim., 10 (2014), 1225-1234.  doi: 10.3934/jimo.2014.10.1225.  Google Scholar

[1]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[2]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[3]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[8]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[9]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[10]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[11]

Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166

[12]

Editorial Office. Retraction: Jinling Wei, Jinming Zhang, Meishuang Dong, Fan Zhang, Yunmo Chen, Sha Jin and Zhike Han, Applications of mathematics to maritime search. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 957-957. doi: 10.3934/dcdss.2019064

[13]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[14]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[15]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[16]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[17]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[18]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (57)
  • HTML views (361)
  • Cited by (0)

Other articles
by authors

[Back to Top]