• Previous Article
    A superlinearly convergent hybrid algorithm for solving nonlinear programming
  • JIMO Home
  • This Issue
  • Next Article
    Effective heuristics for makespan minimization in parallel batch machines with non-identical capacities and job release times
April  2017, 13(2): 995-1007. doi: 10.3934/jimo.2016058

Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

2. 

Center of Financial Engineering, Nanjing Audit University, Nanjing 211815, China

* Corresponding author

Received  December 2015 Revised  June 2016 Published  August 2016

We investigate the infinite-time ruin probability of a renewal risk model with exponential Lévy process investment and dependent claims and inter-arrival times. Assume that claims and corresponding inter-arrival times form a sequence of independent and identically distributed copies of a random pair $(X,T)$ with dependent components. When the product of the claims and the discount factors of the corresponding inter-arrival times are heavy tailed, we establish an asymptotic formula for the infinite-time ruin probability without any restriction on the dependence structure of $(X,T)$.

Citation: Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058
References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104.  doi: 10.1080/03461230802700897.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360.   Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048.  doi: 10.1017/S0021900200008603.  Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004.  Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384.  doi: 10.1111/1467-9965.00121.  Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44.  doi: 10.1007/s00780-003-0105-4.  Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313.  doi: 10.1002/asmb.1925.  Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224.  doi: 10.1017/S0001867800003190.  Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577.  doi: 10.1016/j.insmatheco.2007.06.002.  Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997. Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146.  doi: 10.1017/S0001867800004559.  Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177.  doi: 10.1016/j.spa.2005.09.002.  Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999.   Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394.  doi: 10.1360/022004-16.  Google Scholar

show all references

References:
[1]

A. V. Asimit and A. L. Badescu, Extremes on the discounted aggregate claims in a time dependent risk model, Scandinavian Actuarial Journal, 2010 (2010), 93-104.  doi: 10.1080/03461230802700897.  Google Scholar

[2] N. H. BinghamC. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987.  doi: 10.1017/CBO9780511721434.  Google Scholar
[3]

L. Breiman, On some limit theorems similar to the arc-sin law, Theory of Probability and Its Applications, 10 (1965), 351-360.   Google Scholar

[4]

Y. Chen, The finite-time ruin probability with dependent insurance and financial risks, Journal of Applied Probability, 48 (2011), 1035-1048.  doi: 10.1017/S0021900200008603.  Google Scholar

[5]

D. B. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Processes and Their Applications, 49 (1994), 75-98.  doi: 10.1016/0304-4149(94)90113-9.  Google Scholar

[6]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, London, 2004.  Google Scholar

[7]

S. EmmerC. Klüppelberg and R. Korn, Optimal portfolios with bounded capital at risk, Mathematical Finance, 11 (2001), 365-384.  doi: 10.1111/1467-9965.00121.  Google Scholar

[8]

S. Emmer and C. Klüppelberg, Optimal portfolios when stock prices follow an exponential Lévy process, Finance and Stochastics, 8 (2004), 17-44.  doi: 10.1007/s00780-003-0105-4.  Google Scholar

[9]

K. A. Fu and C. Y. A. Ng, Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims, Insurance: Mathematics and Economics, 56 (2014), 80-87.  doi: 10.1016/j.insmatheco.2014.04.001.  Google Scholar

[10]

F. Guo and D. Wang, Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Lévy process investment returns and dependent claims, Applied Stochastic Models in Business and Industry, 29 (2013), 295-313.  doi: 10.1002/asmb.1925.  Google Scholar

[11]

C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims, Advances in Applied Probability, 41 (2009), 206-224.  doi: 10.1017/S0001867800003190.  Google Scholar

[12]

C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential Lévy investment, Insurance: Mathematics and Economics, 42 (2008), 560-577.  doi: 10.1016/j.insmatheco.2007.06.002.  Google Scholar

[13]

R. Korn, Optimal Portfolios, World Scientific, Singapore, 1997. Google Scholar

[14]

J. LiQ. Tang and R. Wu, Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model, Advances in Applied Probability, 42 (2010), 1126-1146.  doi: 10.1017/S0001867800004559.  Google Scholar

[15]

J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, Journal of Mathematical Analysis and Applications, 387 (2012), 1009-1023.  doi: 10.1016/j.jmaa.2011.10.012.  Google Scholar

[16]

K. Maulik and B. Zwart, Tail asymptotics for exponential functionals of Lévy processes, Stochastic Processes and their Applications, 116 (2006), 156-177.  doi: 10.1016/j.spa.2005.09.002.  Google Scholar

[17] K. Sato, Lévy Processes and Infinite Divisibility, Cambridge University Press, Cambridge, 1999.   Google Scholar
[18]

D. WangC. Su and Y. Zeng, Uniform estimate for maximum of randomly weighted sums with applications to insurance risk theory, Science in China Series A: Mathematics, 48 (2005), 1379-1394.  doi: 10.1360/022004-16.  Google Scholar

[1]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[4]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[5]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[6]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[7]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[8]

Karl-Peter Hadeler, Frithjof Lutscher. Quiescent phases with distributed exit times. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 849-869. doi: 10.3934/dcdsb.2012.17.849

[9]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[10]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[11]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[12]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[13]

Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021049

[14]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[15]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[16]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[17]

Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021078

[18]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[19]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[20]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (84)
  • HTML views (922)
  • Cited by (2)

Other articles
by authors

[Back to Top]