[1]
|
R. H. Byrd, F. E. Curtis and J. Nocedal, Infeasibility detection and SQP methods for nonlinear optimization, SIAM Journal on Optimizaion, 20 (2010), 2281-2299.
doi: 10.1137/080738222.
|
[2]
|
J. F. Bonnans, E. R. Panier, A. L. Tits and J. L. Zhou, Avoiding the Maratos effect by means of a nonmonotone line search. Ⅱ. Inequality constrained problems-feasible iterates, SIAM Journal on Numerical Analysis, 29 (1992), 1187-1202.
doi: 10.1137/0729072.
|
[3]
|
E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Mathematical Programming, 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[4]
|
F. Facchinei, A. Fischer and C. Kanzow, On the accurate identification of active constraints, SIAM Journal of Optimization, 9 (1998), 14-32.
doi: 10.1137/S1052623496305882.
|
[5]
|
C. H. Guo, Y. Q. Bai and J. B. Jian, An improved sequential quadratic programming algorithm for solving general nonlinear programming problems, Journal of Mathematical Analysis and Applications, 409 (2014), 777-789.
doi: 10.1016/j.jmaa.2013.06.052.
|
[6]
|
N. I. M. Gould and D. P. Robinson, A second derivative SQP method: Local convergence and practical issues, SIAM Journal on Optimizaion, 20 (2010), 2049-2079.
doi: 10.1137/080744554.
|
[7]
|
N. I. M. Gould, D. Orban and Ph. L. Toint, A constrained and unconstrained testing environment, revisited, ACM Transactions on Mathematical Software, 29 (2003), 353-372.
doi: 10.1145/962437.962438.
|
[8]
|
M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP method for equality constrained optimization, SIAM Journal on Optimization, 24 (2014), 1507-1541.
doi: 10.1137/130921738.
|
[9]
|
W. Hock and K. Schittkowski, Test examples for nonlinear programming codes, Journal of Optimization Theory and Applications, 30 (1980), 127-129.
doi: 10.1007/BF00934594.
|
[10]
|
J. B. Jian, C. H. Guo, C. M. Tang and Y. Q. Bai, A new superlinearly convergent algorithm of combining QP subproblem with system of linear equations for nonlinear optimization, Journal of Computational and Applied Mathematics, 273 (2015), 88-102.
doi: 10.1016/j.cam.2014.06.009.
|
[11]
|
J. B. Jian, Fast algorithms for smooth constrained optimization---theoretical analysis and numerical experiments, Science Press, Beijing, 2010.
|
[12]
|
J. B. Jian, A strong subfeasible direction algorithm with superlinear convergence, Journal of Systems Science and Systems Engineering, 5 (1996), 287-295.
|
[13]
|
J. B. Jian, C. M. Tang, Q. J. Hu and H. Y. Zheng, A new superlinearly convergent strongly subfeasible sequential quadratic programming algorithm for inequality-constrained optimization, Numerical Functional Analysis and Optimization, 29 (2008), 376-409.
doi: 10.1080/01630560802000918.
|
[14]
|
J. B. Jian, Y. H. Chen and C. H. Guo, A strongly convergent method of quasi-strongly sub-feasible directions for constrained optimization, Pacific Journal of Optimization, 7 (2011), 339-351.
|
[15]
|
J. B. Jian, X. Y. Ke, H. Y. Zheng and C. M. Tang, A method combining norm-relaxed QP subproblems with systems of linear equations for constrained optimization, Journal of Computational and Applied Mathematics, 223 (2009), 1013-1027.
doi: 10.1016/j.cam.2008.03.048.
|
[16]
|
P. Morin, R. H. Nochetto, M. S. Pauletti and M. Verani, Adaptive SQP Method for Shape Optimization, Numerical Mathematics and Advanced Applications 2009, (2010), 663-673.
doi: 10.1007/978-3-642-11795-4_71.
|
[17]
|
J. L. Morales, J. Nocedal and Y. Wu, A sequential quadratic programming algorithm with an additional equality constrained phase, IMA Journal of Numerical Analysis, 32 (2012), 553-579.
doi: 10.1093/imanum/drq037.
|
[18]
|
D. Q. Mayne and E. Polak, A surperlinearly convergent algorithm for constrained optimization problems, Algorithms for Constrained Minimization of Smooth Nonlinear Functions, (1982), 45-61.
|
[19]
|
E. R. Panier and A. L. Tits, On combining feasibility, descent and superlinear convergence in inequality constrained optimization, Mathematical Programming, 59 (1993), 261-276.
doi: 10.1007/BF01581247.
|
[20]
|
J. F. A. Pantoja and D. Q. Mayne, Exact penalty function algorithm with simple updating of the penalty parameter, Journal of Optimization Theory and Applications, 69 (1991), 441-467.
doi: 10.1007/BF00940684.
|
[21]
|
K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Springer-Verlag New York, Inc., 1987.
doi: 10.1007/978-3-642-61582-5.
|
[22]
|
P. Spellucci, A new technique for inconsistent QP problems in the SQP methods, Mathematical Methods of Operations Research, 47 (1998), 355-400.
doi: 10.1007/BF01198402.
|
[23]
|
Y. L. Wang, L. F. Chen and G. P. He, Sequential systems of linear equations method for general constrained optimization without strict complementarity, Journal of Computational and Applied Mathematics, 182 (2005), 447-471.
doi: 10.1016/j.cam.2004.12.023.
|