
-
Previous Article
Solving routing and wavelength assignment problem with maximum edge-disjoint paths
- JIMO Home
- This Issue
-
Next Article
Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects
A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels
Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, 15719-14911 Tehran, Iran |
In the supply chain management, configuration of supply chain is the most important decision in the long term and supplier selection and order allocation are the most important decision in the medium-term that are considered separately. Considering these together can overcome the sub-optimality. This paper deals with an integrated model that has two phases. In the first phase, we present a framework for supplier selection criteria in Closed Loop Supply Chain (CLSC). In addition, we define two performance levels for each supplier based on the quantity and capability of purchasing from it to be closer to real world problem. The output of this phase is the score of each supplier in each criterion in each level. In the second phase, we propose a nonlinear multi-objective mixed integer model that determines the number and location of all facilities (strategic decision), flow in each echelon of CLSC (tactical decision) and supplier selection and order allocation (hybrid decision). The objective functions maximize profit and scores of suppliers and minimize total pollution. To solve the model, we have created a transformation based on the piecewise linearization method. The mathematical programming model illustrated by a real numerical example.
References:
[1] |
S. H. Amin and J. Razmi,
An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.
doi: 10.1016/j.eswa.2008.10.012. |
[2] |
S. H. Amin and G. Zhang,
An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.
doi: 10.1016/j.eswa.2011.12.056. |
[3] |
A. Azaron, K. N. Brown, S. A. Tarima and M. Modarres,
A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.
doi: 10.1016/j.ijpe.2008.08.002. |
[4] |
A. Azaron, K. Furmans and M. Modarres,
Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.
doi: 10.1007/978-3-642-00142-0_28. |
[5] |
A. Baghalian, S. Rezapour and R. Z. Farahani,
Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.
doi: 10.1016/j.ejor.2012.12.017. |
[6] |
L. T. Chen,
Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.
doi: 10.1016/j.jmsy.2013.11.002. |
[7] |
S. Y. Chou and Y. H. Chang,
A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.
|
[8] |
L. De Boer, E. Labro and P. Morllacchi,
A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.
|
[9] |
H. Fallah, H. Eskandari and M. Pishvaee,
Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.
doi: 10.1016/j.jmsy.2015.01.005. |
[10] |
M. Fleischmann, P. Beullens, J. M. Bloemhof-Ruwaard and L. N. Van Wassenhove,
The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.
doi: 10.1111/j.1937-5956.2001.tb00076.x. |
[11] |
D. Francas and S. Minner,
Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.
doi: 10.1016/j.omega.2008.07.007. |
[12] |
X. Gang, Y. Wuyi and W. Shouyang,
Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.
doi: 10.3934/jimo.2015.11.515. |
[13] |
S. H. Ghodsypour and C. O'Brein,
A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.
doi: 10.1016/S0925-5273(97)00009-1. |
[14] |
B. Giri and S. Sharma,
Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.
|
[15] |
M. Goh, J. Lim and F. Meng,
A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.
doi: 10.1016/j.ejor.2006.08.028. |
[16] |
G. Guillen, F. D. Male, M. J. Bagaajewicz, A. Espuna and L. Puigjaner,
Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.
doi: 10.1016/j.ces.2004.10.023. |
[17] |
I. Harris, M. Naim, A. Palmer, A. Potter and C. Mumdord,
Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of
Production Economics, 131 (2011), 313-321.
doi: 10.1016/j.ijpe.2010.03.005. |
[18] |
W. Ho,
Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.
doi: 10.1016/j.ejor.2007.01.004. |
[19] |
P. K. Humphreys, Y. K. Wong and F. T. Chan,
Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.
doi: 10.1016/S0924-0136(03)00097-9. |
[20] |
C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981. |
[21] |
H. kabza,
Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.
|
[22] |
C. Kahraman, U. Cebeci and Z. Ulukan,
Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.
doi: 10.1108/09576050310503367. |
[23] |
D. Kannan, R. Khodaverdi, L. Olfat and A. Diabat,
Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.
|
[24] |
H. J. Ko and G. W. Evans,
A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.
doi: 10.1016/j.cor.2005.03.004. |
[25] |
Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-642-48753-8_3. |
[26] |
A. H. Lee, H. Y. Kang, C. F. Hsu and H. C. Hung,
A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.
doi: 10.1016/j.eswa.2008.11.052. |
[27] |
D. H. Lee and M. Dong,
Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.
doi: 10.1016/j.tre.2008.08.002. |
[28] |
O. Listes,
A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.
doi: 10.1016/j.cor.2005.03.007. |
[29] |
A. Najla, M. Haouari and E. Hassini,
Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.
|
[30] |
K. R. Pati, P. Vrat and P. Kumar,
A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.
doi: 10.1016/j.omega.2006.04.014. |
[31] |
S. K. Paul, R. Sarker and D. Essam,
Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.
doi: 10.3934/jimo.2016.12.1009. |
[32] |
D. Peidro, J. Mula, R. Poler and J. L. Verdegay,
Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.
doi: 10.1016/j.fss.2009.02.021. |
[33] |
S. pokharel and A. Mutha,
Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.
doi: 10.1016/j.resconrec.2008.11.006. |
[34] |
J. Shu and J. Sun,
Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.
doi: 10.3934/jimo.2006.2.339. |
[35] |
B. Sundarakani, R. de'Souza, M. Goh, S. M. Wagner and S. Manikandan,
Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.
doi: 10.1016/j.ijpe.2010.01.018. |
[36] |
M. Thierry, M. Salomon, J. V. Nunen and L. V. Wassenhove,
Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.
|
[37] |
P. Tsiakis, N. Shah and C. C. Pantelides,
Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.
doi: 10.1021/ie0100030. |
[38] |
H. Uster, G. Easwaran, E. Akcali and S. Cetinkaya,
Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.
doi: 10.1002/nav.20262. |
[39] |
H. F. Wang and H. W. Hsu,
A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.
doi: 10.1016/j.cor.2009.06.001. |
[40] |
C. A. Weber, J. P. Current and W. C. Benton,
Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.
doi: 10.1016/0377-2217(91)90033-R. |
[41] |
G. Xie, W. Yue and S. Wang,
Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.
doi: 10.3934/jimo.2015.11.515. |
[42] |
Q. Zhai, H. Cao, X. Zhao and C. Yuan,
Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.
doi: 10.1016/j.jclepro.2014.03.072. |
[43] |
H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001.
doi: 10.1007/978-94-010-0646-0. |
show all references
References:
[1] |
S. H. Amin and J. Razmi,
An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.
doi: 10.1016/j.eswa.2008.10.012. |
[2] |
S. H. Amin and G. Zhang,
An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.
doi: 10.1016/j.eswa.2011.12.056. |
[3] |
A. Azaron, K. N. Brown, S. A. Tarima and M. Modarres,
A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.
doi: 10.1016/j.ijpe.2008.08.002. |
[4] |
A. Azaron, K. Furmans and M. Modarres,
Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.
doi: 10.1007/978-3-642-00142-0_28. |
[5] |
A. Baghalian, S. Rezapour and R. Z. Farahani,
Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.
doi: 10.1016/j.ejor.2012.12.017. |
[6] |
L. T. Chen,
Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.
doi: 10.1016/j.jmsy.2013.11.002. |
[7] |
S. Y. Chou and Y. H. Chang,
A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.
|
[8] |
L. De Boer, E. Labro and P. Morllacchi,
A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.
|
[9] |
H. Fallah, H. Eskandari and M. Pishvaee,
Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.
doi: 10.1016/j.jmsy.2015.01.005. |
[10] |
M. Fleischmann, P. Beullens, J. M. Bloemhof-Ruwaard and L. N. Van Wassenhove,
The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.
doi: 10.1111/j.1937-5956.2001.tb00076.x. |
[11] |
D. Francas and S. Minner,
Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.
doi: 10.1016/j.omega.2008.07.007. |
[12] |
X. Gang, Y. Wuyi and W. Shouyang,
Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.
doi: 10.3934/jimo.2015.11.515. |
[13] |
S. H. Ghodsypour and C. O'Brein,
A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.
doi: 10.1016/S0925-5273(97)00009-1. |
[14] |
B. Giri and S. Sharma,
Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.
|
[15] |
M. Goh, J. Lim and F. Meng,
A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.
doi: 10.1016/j.ejor.2006.08.028. |
[16] |
G. Guillen, F. D. Male, M. J. Bagaajewicz, A. Espuna and L. Puigjaner,
Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.
doi: 10.1016/j.ces.2004.10.023. |
[17] |
I. Harris, M. Naim, A. Palmer, A. Potter and C. Mumdord,
Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of
Production Economics, 131 (2011), 313-321.
doi: 10.1016/j.ijpe.2010.03.005. |
[18] |
W. Ho,
Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.
doi: 10.1016/j.ejor.2007.01.004. |
[19] |
P. K. Humphreys, Y. K. Wong and F. T. Chan,
Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.
doi: 10.1016/S0924-0136(03)00097-9. |
[20] |
C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981. |
[21] |
H. kabza,
Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.
|
[22] |
C. Kahraman, U. Cebeci and Z. Ulukan,
Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.
doi: 10.1108/09576050310503367. |
[23] |
D. Kannan, R. Khodaverdi, L. Olfat and A. Diabat,
Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.
|
[24] |
H. J. Ko and G. W. Evans,
A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.
doi: 10.1016/j.cor.2005.03.004. |
[25] |
Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-642-48753-8_3. |
[26] |
A. H. Lee, H. Y. Kang, C. F. Hsu and H. C. Hung,
A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.
doi: 10.1016/j.eswa.2008.11.052. |
[27] |
D. H. Lee and M. Dong,
Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.
doi: 10.1016/j.tre.2008.08.002. |
[28] |
O. Listes,
A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.
doi: 10.1016/j.cor.2005.03.007. |
[29] |
A. Najla, M. Haouari and E. Hassini,
Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.
|
[30] |
K. R. Pati, P. Vrat and P. Kumar,
A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.
doi: 10.1016/j.omega.2006.04.014. |
[31] |
S. K. Paul, R. Sarker and D. Essam,
Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.
doi: 10.3934/jimo.2016.12.1009. |
[32] |
D. Peidro, J. Mula, R. Poler and J. L. Verdegay,
Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.
doi: 10.1016/j.fss.2009.02.021. |
[33] |
S. pokharel and A. Mutha,
Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.
doi: 10.1016/j.resconrec.2008.11.006. |
[34] |
J. Shu and J. Sun,
Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.
doi: 10.3934/jimo.2006.2.339. |
[35] |
B. Sundarakani, R. de'Souza, M. Goh, S. M. Wagner and S. Manikandan,
Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.
doi: 10.1016/j.ijpe.2010.01.018. |
[36] |
M. Thierry, M. Salomon, J. V. Nunen and L. V. Wassenhove,
Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.
|
[37] |
P. Tsiakis, N. Shah and C. C. Pantelides,
Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.
doi: 10.1021/ie0100030. |
[38] |
H. Uster, G. Easwaran, E. Akcali and S. Cetinkaya,
Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.
doi: 10.1002/nav.20262. |
[39] |
H. F. Wang and H. W. Hsu,
A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.
doi: 10.1016/j.cor.2009.06.001. |
[40] |
C. A. Weber, J. P. Current and W. C. Benton,
Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.
doi: 10.1016/0377-2217(91)90033-R. |
[41] |
G. Xie, W. Yue and S. Wang,
Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.
doi: 10.3934/jimo.2015.11.515. |
[42] |
Q. Zhai, H. Cao, X. Zhao and C. Yuan,
Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.
doi: 10.1016/j.jclepro.2014.03.072. |
[43] |
H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001.
doi: 10.1007/978-94-010-0646-0. |



Category | DM1 | DM2 | DM3 | TFN1 | TFN2 | TFN3 | Weight of Category |
Ability | M | M | MH | (3, 5, 7) | (3, 5, 7) | (5, 7, 9) | (3.66, 5.66, 7.66) |
Responsibility | MH | H | MH | (5, 7, 9) | (7, 9, 10) | (5, 7, 9) | (5.66, 7.66, 9.33) |
Green | H | H | VH | (7, 9, 10) | (7, 9, 10) | (9, 10, 10) | (7.66, 9.33, 10) |
Process-related | M | MH | M | (3, 5, 7) | (5, 7, 9) | (3, 5, 7) | (3.66, 5.66, 7.66) |
Category | DM1 | DM2 | DM3 | TFN1 | TFN2 | TFN3 | Weight of Category |
Ability | M | M | MH | (3, 5, 7) | (3, 5, 7) | (5, 7, 9) | (3.66, 5.66, 7.66) |
Responsibility | MH | H | MH | (5, 7, 9) | (7, 9, 10) | (5, 7, 9) | (5.66, 7.66, 9.33) |
Green | H | H | VH | (7, 9, 10) | (7, 9, 10) | (9, 10, 10) | (7.66, 9.33, 10) |
Process-related | M | MH | M | (3, 5, 7) | (5, 7, 9) | (3, 5, 7) | (3.66, 5.66, 7.66) |
Criteria | DM1 | DM2 | DM3 | Weight of criteria |
Delivery (Lead time) | VH | H | H | (8.33, 9.66, 10) |
Defect rate | MH | M | M | (3.66, 5.66, 7.66) |
Financial position | MH | M | MH | (4.33, 6.33, 8.33) |
Training | H | MH | VH | (7, 8.66, 9.66) |
Number of personnel | VH | H | MH | (7, 8.66, 9.66) |
Number of personnel | MH | M | M | (3.66, 5.66, 7.66) |
Green packaging | M | MH | MH | (4.33, 6.33, 8.33) |
Process flexibility | M | MH | M | (3.66, 5.66, 7.66) |
Process safety | MH | H | MH | (4.33, 6.33, 8.33) |
Criteria | DM1 | DM2 | DM3 | Weight of criteria |
Delivery (Lead time) | VH | H | H | (8.33, 9.66, 10) |
Defect rate | MH | M | M | (3.66, 5.66, 7.66) |
Financial position | MH | M | MH | (4.33, 6.33, 8.33) |
Training | H | MH | VH | (7, 8.66, 9.66) |
Number of personnel | VH | H | MH | (7, 8.66, 9.66) |
Number of personnel | MH | M | M | (3.66, 5.66, 7.66) |
Green packaging | M | MH | MH | (4.33, 6.33, 8.33) |
Process flexibility | M | MH | M | (3.66, 5.66, 7.66) |
Process safety | MH | H | MH | (4.33, 6.33, 8.33) |
Criteria | SUPPLIER 1 IN LEVEL 1 | SUPPLIER 1 IN LEVEL 2 | ||||||
DM1 | DM2 | DM3 | ASSESSMENT SUPPLIER 1 IN LEVEL 1 | DM1 | DM2 | DM3 | ASSESSMENT SUPPLIER 1 IN LEVEL 2 | |
Delivery (Lead time) | VH | H | MH | (7, 8.66, 9.66) | VH | VH | H | (8.33, 9.66, 10) |
Defect rate | MH | M | ML | (3, 5, 7) | H | MH | M | (5, 7, 8.66) |
Financial position | MH | M | M | (3.66, 5.66, 7.66) | MH | MH | M | (4.33, 6.33, 8.33) |
Training | H | MH | H | (6.33, 8.33, 9.66) | H | H | VH | (7.66, 9.33, 10) |
Number of personnel | VH | H | MH | (7, 8.66, 9.66) | VH | VH | H | (8.33, 9.66, 10) |
Number of personnel | MH | M | MH | (4.33, 6.33, 8.33) | H | MH | H | (6.33, 8.33, 9.66) |
Green packaging | M | MH | M | (3.66, 5.66, 7.66) | MH | H | MH | (5.66, 7.66, 9.33) |
Process flexibility | M | MH | MH | (4.33, 6.33, 8.33) | MH | H | H | (6.33, 8.33, 9.66) |
Process safety | MH | H | H | (6.33, 8.33, 9.66) | H | VH | VH | (8.33, 9.66, 10) |
Criteria | SUPPLIER 1 IN LEVEL 1 | SUPPLIER 1 IN LEVEL 2 | ||||||
DM1 | DM2 | DM3 | ASSESSMENT SUPPLIER 1 IN LEVEL 1 | DM1 | DM2 | DM3 | ASSESSMENT SUPPLIER 1 IN LEVEL 2 | |
Delivery (Lead time) | VH | H | MH | (7, 8.66, 9.66) | VH | VH | H | (8.33, 9.66, 10) |
Defect rate | MH | M | ML | (3, 5, 7) | H | MH | M | (5, 7, 8.66) |
Financial position | MH | M | M | (3.66, 5.66, 7.66) | MH | MH | M | (4.33, 6.33, 8.33) |
Training | H | MH | H | (6.33, 8.33, 9.66) | H | H | VH | (7.66, 9.33, 10) |
Number of personnel | VH | H | MH | (7, 8.66, 9.66) | VH | VH | H | (8.33, 9.66, 10) |
Number of personnel | MH | M | MH | (4.33, 6.33, 8.33) | H | MH | H | (6.33, 8.33, 9.66) |
Green packaging | M | MH | M | (3.66, 5.66, 7.66) | MH | H | MH | (5.66, 7.66, 9.33) |
Process flexibility | M | MH | MH | (4.33, 6.33, 8.33) | MH | H | H | (6.33, 8.33, 9.66) |
Process safety | MH | H | H | (6.33, 8.33, 9.66) | H | VH | VH | (8.33, 9.66, 10) |
Criteria | Final score 1 | Final score 2 | a1l1 | a1l2 |
Delivery (Lead time) | (213.41,473.49,739.95) | (248,462.33,760) | 411.6 | 490.1 |
Defect rate | (39.52,160.17,410.72) | (64.8,219.52,496.73) | 203.3 | 260.3 |
Financial position | (58,202.78,488.76) | (66.56,222.26,523.56) | 249.8 | 270.3 |
Training | (250.79,552.57,870.63) | (297.92,607.84,892.8) | 557.9 | 599.5 |
Number of personnel | (277.34,574.46,870.63) | (325.36,627.45,892.8) | 574.1 | 615.1 |
Reusable | (121.39,328.1,630.8) | (172.36,432.26,729.6) | 360 | 444.7 |
Green packaging | (117.64,328.1,630.8) | (183,445.28,771.9) | 358.8 | 466.7 |
Process flexibility | (55.72,197.56,479.4) | (81.64,260.28,554.49) | 244.2 | 298.7 |
Process safety | (97.52,292.82,605.56) | (128.484,292.82,630.8) | 331.9 | 350.6 |
Criteria | Final score 1 | Final score 2 | a1l1 | a1l2 |
Delivery (Lead time) | (213.41,473.49,739.95) | (248,462.33,760) | 411.6 | 490.1 |
Defect rate | (39.52,160.17,410.72) | (64.8,219.52,496.73) | 203.3 | 260.3 |
Financial position | (58,202.78,488.76) | (66.56,222.26,523.56) | 249.8 | 270.3 |
Training | (250.79,552.57,870.63) | (297.92,607.84,892.8) | 557.9 | 599.5 |
Number of personnel | (277.34,574.46,870.63) | (325.36,627.45,892.8) | 574.1 | 615.1 |
Reusable | (121.39,328.1,630.8) | (172.36,432.26,729.6) | 360 | 444.7 |
Green packaging | (117.64,328.1,630.8) | (183,445.28,771.9) | 358.8 | 466.7 |
Process flexibility | (55.72,197.56,479.4) | (81.64,260.28,554.49) | 244.2 | 298.7 |
Process safety | (97.52,292.82,605.56) | (128.484,292.82,630.8) | 331.9 | 350.6 |
aklw | k1 | k2 | k3 | k4 | k5 |
l1.w1 | 411.6 | 372.5 | 367.7 | 433.4 | 371.1 |
l2.w1 | 203.3 | 505.9 | 563 | 270.2 | 288.1 |
l3.w1 | 249.8 | 420.6 | 499.4 | 525.2 | 473.7 |
l4.w1 | 557.9 | 425.8 | 345.8 | 248.1 | 478.4 |
l5.w1 | 574.1 | 410.9 | 505.6 | 383.2 | 573.7 |
l6.w1 | 360 | 225.6 | 561.3 | 491 | 384.1 |
l7.w1 | 358.8 | 523.9 | 232.9 | 280.4 | 366.7 |
l8.w1 | 244.2 | 217.6 | 300.8 | 477.9 | 307.8 |
l9.w1 | 331.9 | 204.7 | 234.2 | 533.9 | 283.9 |
l1.w2 | 490.1 | 409.7 | 404.4 | 476.7 | 408.2 |
l2.w2 | 260.3 | 556.4 | 619.3 | 297.2 | 316.9 |
l3.w2 | 270.3 | 462.6 | 549.3 | 577.7 | 521.1 |
l4.w2 | 599.5 | 638.7 | 518.7 | 372.1 | 717.6 |
l5.w2 | 615.1 | 616.3 | 758.4 | 574.8 | 860.5 |
l6.w2 | 444.7 | 239.1 | 594.9 | 520.4 | 407.1 |
l7.w2 | 466.7 | 555.3 | 246.8 | 297.2 | 388.7 |
l8.w2 | 298.7 | 243.7 | 336.8 | 535.2 | 344.7 |
l9.w2 | 350.6 | 229.2 | 262.3 | 597.9 | 317.9 |
aklw | k1 | k2 | k3 | k4 | k5 |
l1.w1 | 411.6 | 372.5 | 367.7 | 433.4 | 371.1 |
l2.w1 | 203.3 | 505.9 | 563 | 270.2 | 288.1 |
l3.w1 | 249.8 | 420.6 | 499.4 | 525.2 | 473.7 |
l4.w1 | 557.9 | 425.8 | 345.8 | 248.1 | 478.4 |
l5.w1 | 574.1 | 410.9 | 505.6 | 383.2 | 573.7 |
l6.w1 | 360 | 225.6 | 561.3 | 491 | 384.1 |
l7.w1 | 358.8 | 523.9 | 232.9 | 280.4 | 366.7 |
l8.w1 | 244.2 | 217.6 | 300.8 | 477.9 | 307.8 |
l9.w1 | 331.9 | 204.7 | 234.2 | 533.9 | 283.9 |
l1.w2 | 490.1 | 409.7 | 404.4 | 476.7 | 408.2 |
l2.w2 | 260.3 | 556.4 | 619.3 | 297.2 | 316.9 |
l3.w2 | 270.3 | 462.6 | 549.3 | 577.7 | 521.1 |
l4.w2 | 599.5 | 638.7 | 518.7 | 372.1 | 717.6 |
l5.w2 | 615.1 | 616.3 | 758.4 | 574.8 | 860.5 |
l6.w2 | 444.7 | 239.1 | 594.9 | 520.4 | 407.1 |
l7.w2 | 466.7 | 555.3 | 246.8 | 297.2 | 388.7 |
l8.w2 | 298.7 | 243.7 | 336.8 | 535.2 | 344.7 |
l9.w2 | 350.6 | 229.2 | 262.3 | 597.9 | 317.9 |
[1] |
Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021107 |
[2] |
Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021181 |
[3] |
Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial and Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058 |
[4] |
Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial and Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039 |
[5] |
Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023 |
[6] |
Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2389-2414. doi: 10.3934/jimo.2020074 |
[7] |
Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021117 |
[8] |
Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116 |
[9] |
Huaqing Cao, Xiaofen Ji. Optimal recycling price strategy of clothing enterprises based on closed-loop supply chain. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021232 |
[10] |
Shuaishuai Fu, Weida Chen, Junfei Ding, Dandan Wang. Optimal financing strategy in a closed-loop supply chain for construction machinery remanufacturing with emissions abatement. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022002 |
[11] |
Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1603-1627. doi: 10.3934/jimo.2021035 |
[12] |
Kaveh Keshmiry Zadeh, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. Designing a multi-echelon closed-loop supply chain with disruption in the distribution centers under uncertainty. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022057 |
[13] |
Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1389-1414. doi: 10.3934/jimo.2019008 |
[14] |
Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021118 |
[15] |
Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1161-1183. doi: 10.3934/jimo.2021014 |
[16] |
Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial and Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515 |
[17] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[18] |
Arman Hamedirostami, Alireza Goli, Yousef Gholipour-Kanani. Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021105 |
[19] |
Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267 |
[20] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial and Management Optimization, 2022, 18 (2) : 843-872. doi: 10.3934/jimo.2020181 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]