• Previous Article
    Solving routing and wavelength assignment problem with maximum edge-disjoint paths
  • JIMO Home
  • This Issue
  • Next Article
    Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects
April  2017, 13(2): 1041-1064. doi: 10.3934/jimo.2016061

A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels

Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, 15719-14911 Tehran, Iran

* Corresponding author: Masoud Mohammadzadeh

Received  July 2015 Revised  August 2016 Published  October 2016

In the supply chain management, configuration of supply chain is the most important decision in the long term and supplier selection and order allocation are the most important decision in the medium-term that are considered separately. Considering these together can overcome the sub-optimality. This paper deals with an integrated model that has two phases. In the first phase, we present a framework for supplier selection criteria in Closed Loop Supply Chain (CLSC). In addition, we define two performance levels for each supplier based on the quantity and capability of purchasing from it to be closer to real world problem. The output of this phase is the score of each supplier in each criterion in each level. In the second phase, we propose a nonlinear multi-objective mixed integer model that determines the number and location of all facilities (strategic decision), flow in each echelon of CLSC (tactical decision) and supplier selection and order allocation (hybrid decision). The objective functions maximize profit and scores of suppliers and minimize total pollution. To solve the model, we have created a transformation based on the piecewise linearization method. The mathematical programming model illustrated by a real numerical example.

Citation: Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061
References:
[1]

S. H. Amin and J. Razmi, An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.  doi: 10.1016/j.eswa.2008.10.012.  Google Scholar

[2]

S. H. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.  doi: 10.1016/j.eswa.2011.12.056.  Google Scholar

[3]

A. AzaronK. N. BrownS. A. Tarima and M. Modarres, A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.  doi: 10.1016/j.ijpe.2008.08.002.  Google Scholar

[4]

A. AzaronK. Furmans and M. Modarres, Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.  doi: 10.1007/978-3-642-00142-0_28.  Google Scholar

[5]

A. BaghalianS. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.  doi: 10.1016/j.ejor.2012.12.017.  Google Scholar

[6]

L. T. Chen, Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.  doi: 10.1016/j.jmsy.2013.11.002.  Google Scholar

[7]

S. Y. Chou and Y. H. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.   Google Scholar

[8]

L. De BoerE. Labro and P. Morllacchi, A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.   Google Scholar

[9]

H. FallahH. Eskandari and M. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.  doi: 10.1016/j.jmsy.2015.01.005.  Google Scholar

[10]

M. FleischmannP. BeullensJ. M. Bloemhof-Ruwaard and L. N. Van Wassenhove, The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.  doi: 10.1111/j.1937-5956.2001.tb00076.x.  Google Scholar

[11]

D. Francas and S. Minner, Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.  doi: 10.1016/j.omega.2008.07.007.  Google Scholar

[12]

X. GangY. Wuyi and W. Shouyang, Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[13]

S. H. Ghodsypour and C. O'Brein, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.  doi: 10.1016/S0925-5273(97)00009-1.  Google Scholar

[14]

B. Giri and S. Sharma, Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.   Google Scholar

[15]

M. GohJ. Lim and F. Meng, A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.  doi: 10.1016/j.ejor.2006.08.028.  Google Scholar

[16]

G. GuillenF. D. MaleM. J. BagaajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.  doi: 10.1016/j.ces.2004.10.023.  Google Scholar

[17]

I. HarrisM. NaimA. PalmerA. Potter and C. Mumdord, Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of Production Economics, 131 (2011), 313-321.  doi: 10.1016/j.ijpe.2010.03.005.  Google Scholar

[18]

W. Ho, Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.  doi: 10.1016/j.ejor.2007.01.004.  Google Scholar

[19]

P. K. HumphreysY. K. Wong and F. T. Chan, Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.  doi: 10.1016/S0924-0136(03)00097-9.  Google Scholar

[20]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[21]

H. kabza, Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.   Google Scholar

[22]

C. KahramanU. Cebeci and Z. Ulukan, Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.  doi: 10.1108/09576050310503367.  Google Scholar

[23]

D. KannanR. KhodaverdiL. Olfat and A. Diabat, Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.   Google Scholar

[24]

H. J. Ko and G. W. Evans, A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.  doi: 10.1016/j.cor.2005.03.004.  Google Scholar

[25]

Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-48753-8_3.  Google Scholar

[26]

A. H. LeeH. Y. KangC. F. Hsu and H. C. Hung, A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.  doi: 10.1016/j.eswa.2008.11.052.  Google Scholar

[27]

D. H. Lee and M. Dong, Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.  doi: 10.1016/j.tre.2008.08.002.  Google Scholar

[28]

O. Listes, A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.  doi: 10.1016/j.cor.2005.03.007.  Google Scholar

[29]

A. NajlaM. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.   Google Scholar

[30]

K. R. PatiP. Vrat and P. Kumar, A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.  doi: 10.1016/j.omega.2006.04.014.  Google Scholar

[31]

S. K. PaulR. Sarker and D. Essam, Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.  doi: 10.3934/jimo.2016.12.1009.  Google Scholar

[32]

D. PeidroJ. MulaR. Poler and J. L. Verdegay, Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.  doi: 10.1016/j.fss.2009.02.021.  Google Scholar

[33]

S. pokharel and A. Mutha, Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.  doi: 10.1016/j.resconrec.2008.11.006.  Google Scholar

[34]

J. Shu and J. Sun, Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.  doi: 10.3934/jimo.2006.2.339.  Google Scholar

[35]

B. SundarakaniR. de'SouzaM. GohS. M. Wagner and S. Manikandan, Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.  doi: 10.1016/j.ijpe.2010.01.018.  Google Scholar

[36]

M. ThierryM. SalomonJ. V. Nunen and L. V. Wassenhove, Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.   Google Scholar

[37]

P. TsiakisN. Shah and C. C. Pantelides, Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.  doi: 10.1021/ie0100030.  Google Scholar

[38]

H. UsterG. EaswaranE. Akcali and S. Cetinkaya, Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.  doi: 10.1002/nav.20262.  Google Scholar

[39]

H. F. Wang and H. W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.  doi: 10.1016/j.cor.2009.06.001.  Google Scholar

[40]

C. A. WeberJ. P. Current and W. C. Benton, Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.  doi: 10.1016/0377-2217(91)90033-R.  Google Scholar

[41]

G. XieW. Yue and S. Wang, Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[42]

Q. ZhaiH. CaoX. Zhao and C. Yuan, Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.  doi: 10.1016/j.jclepro.2014.03.072.  Google Scholar

[43]

H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001. doi: 10.1007/978-94-010-0646-0.  Google Scholar

show all references

References:
[1]

S. H. Amin and J. Razmi, An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.  doi: 10.1016/j.eswa.2008.10.012.  Google Scholar

[2]

S. H. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.  doi: 10.1016/j.eswa.2011.12.056.  Google Scholar

[3]

A. AzaronK. N. BrownS. A. Tarima and M. Modarres, A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.  doi: 10.1016/j.ijpe.2008.08.002.  Google Scholar

[4]

A. AzaronK. Furmans and M. Modarres, Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.  doi: 10.1007/978-3-642-00142-0_28.  Google Scholar

[5]

A. BaghalianS. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.  doi: 10.1016/j.ejor.2012.12.017.  Google Scholar

[6]

L. T. Chen, Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.  doi: 10.1016/j.jmsy.2013.11.002.  Google Scholar

[7]

S. Y. Chou and Y. H. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.   Google Scholar

[8]

L. De BoerE. Labro and P. Morllacchi, A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.   Google Scholar

[9]

H. FallahH. Eskandari and M. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.  doi: 10.1016/j.jmsy.2015.01.005.  Google Scholar

[10]

M. FleischmannP. BeullensJ. M. Bloemhof-Ruwaard and L. N. Van Wassenhove, The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.  doi: 10.1111/j.1937-5956.2001.tb00076.x.  Google Scholar

[11]

D. Francas and S. Minner, Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.  doi: 10.1016/j.omega.2008.07.007.  Google Scholar

[12]

X. GangY. Wuyi and W. Shouyang, Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[13]

S. H. Ghodsypour and C. O'Brein, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.  doi: 10.1016/S0925-5273(97)00009-1.  Google Scholar

[14]

B. Giri and S. Sharma, Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.   Google Scholar

[15]

M. GohJ. Lim and F. Meng, A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.  doi: 10.1016/j.ejor.2006.08.028.  Google Scholar

[16]

G. GuillenF. D. MaleM. J. BagaajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.  doi: 10.1016/j.ces.2004.10.023.  Google Scholar

[17]

I. HarrisM. NaimA. PalmerA. Potter and C. Mumdord, Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of Production Economics, 131 (2011), 313-321.  doi: 10.1016/j.ijpe.2010.03.005.  Google Scholar

[18]

W. Ho, Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.  doi: 10.1016/j.ejor.2007.01.004.  Google Scholar

[19]

P. K. HumphreysY. K. Wong and F. T. Chan, Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.  doi: 10.1016/S0924-0136(03)00097-9.  Google Scholar

[20]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[21]

H. kabza, Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.   Google Scholar

[22]

C. KahramanU. Cebeci and Z. Ulukan, Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.  doi: 10.1108/09576050310503367.  Google Scholar

[23]

D. KannanR. KhodaverdiL. Olfat and A. Diabat, Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.   Google Scholar

[24]

H. J. Ko and G. W. Evans, A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.  doi: 10.1016/j.cor.2005.03.004.  Google Scholar

[25]

Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-48753-8_3.  Google Scholar

[26]

A. H. LeeH. Y. KangC. F. Hsu and H. C. Hung, A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.  doi: 10.1016/j.eswa.2008.11.052.  Google Scholar

[27]

D. H. Lee and M. Dong, Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.  doi: 10.1016/j.tre.2008.08.002.  Google Scholar

[28]

O. Listes, A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.  doi: 10.1016/j.cor.2005.03.007.  Google Scholar

[29]

A. NajlaM. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.   Google Scholar

[30]

K. R. PatiP. Vrat and P. Kumar, A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.  doi: 10.1016/j.omega.2006.04.014.  Google Scholar

[31]

S. K. PaulR. Sarker and D. Essam, Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.  doi: 10.3934/jimo.2016.12.1009.  Google Scholar

[32]

D. PeidroJ. MulaR. Poler and J. L. Verdegay, Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.  doi: 10.1016/j.fss.2009.02.021.  Google Scholar

[33]

S. pokharel and A. Mutha, Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.  doi: 10.1016/j.resconrec.2008.11.006.  Google Scholar

[34]

J. Shu and J. Sun, Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.  doi: 10.3934/jimo.2006.2.339.  Google Scholar

[35]

B. SundarakaniR. de'SouzaM. GohS. M. Wagner and S. Manikandan, Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.  doi: 10.1016/j.ijpe.2010.01.018.  Google Scholar

[36]

M. ThierryM. SalomonJ. V. Nunen and L. V. Wassenhove, Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.   Google Scholar

[37]

P. TsiakisN. Shah and C. C. Pantelides, Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.  doi: 10.1021/ie0100030.  Google Scholar

[38]

H. UsterG. EaswaranE. Akcali and S. Cetinkaya, Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.  doi: 10.1002/nav.20262.  Google Scholar

[39]

H. F. Wang and H. W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.  doi: 10.1016/j.cor.2009.06.001.  Google Scholar

[40]

C. A. WeberJ. P. Current and W. C. Benton, Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.  doi: 10.1016/0377-2217(91)90033-R.  Google Scholar

[41]

G. XieW. Yue and S. Wang, Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[42]

Q. ZhaiH. CaoX. Zhao and C. Yuan, Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.  doi: 10.1016/j.jclepro.2014.03.072.  Google Scholar

[43]

H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001. doi: 10.1007/978-94-010-0646-0.  Google Scholar

Figure 1.  Proposed supplier selection criteria classification
1]">Figure 2.  linguistic scale presented by Amin and Razmi [1]
Figure 3.  Approximation of accumulative standard normal distribution function 6
Figure 4.  The solution of the numerical example network
Table 1.  Importance of categories
CategoryDM1DM2DM3TFN1TFN2TFN3Weight of Category
AbilityMMMH(3, 5, 7)(3, 5, 7)(5, 7, 9)(3.66, 5.66, 7.66)
ResponsibilityMHHMH(5, 7, 9)(7, 9, 10)(5, 7, 9)(5.66, 7.66, 9.33)
GreenHHVH(7, 9, 10)(7, 9, 10)(9, 10, 10)(7.66, 9.33, 10)
Process-relatedMMHM(3, 5, 7)(5, 7, 9)(3, 5, 7)(3.66, 5.66, 7.66)
CategoryDM1DM2DM3TFN1TFN2TFN3Weight of Category
AbilityMMMH(3, 5, 7)(3, 5, 7)(5, 7, 9)(3.66, 5.66, 7.66)
ResponsibilityMHHMH(5, 7, 9)(7, 9, 10)(5, 7, 9)(5.66, 7.66, 9.33)
GreenHHVH(7, 9, 10)(7, 9, 10)(9, 10, 10)(7.66, 9.33, 10)
Process-relatedMMHM(3, 5, 7)(5, 7, 9)(3, 5, 7)(3.66, 5.66, 7.66)
Table 2.  Importance of criteria
CriteriaDM1DM2DM3Weight of criteria
Delivery (Lead time)VHHH(8.33, 9.66, 10)
Defect rateMHMM(3.66, 5.66, 7.66)
Financial positionMHMMH(4.33, 6.33, 8.33)
TrainingHMHVH(7, 8.66, 9.66)
Number of personnelVHHMH(7, 8.66, 9.66)
Number of personnelMHMM(3.66, 5.66, 7.66)
Green packagingMMHMH(4.33, 6.33, 8.33)
Process flexibilityMMHM(3.66, 5.66, 7.66)
Process safetyMHHMH(4.33, 6.33, 8.33)
CriteriaDM1DM2DM3Weight of criteria
Delivery (Lead time)VHHH(8.33, 9.66, 10)
Defect rateMHMM(3.66, 5.66, 7.66)
Financial positionMHMMH(4.33, 6.33, 8.33)
TrainingHMHVH(7, 8.66, 9.66)
Number of personnelVHHMH(7, 8.66, 9.66)
Number of personnelMHMM(3.66, 5.66, 7.66)
Green packagingMMHMH(4.33, 6.33, 8.33)
Process flexibilityMMHM(3.66, 5.66, 7.66)
Process safetyMHHMH(4.33, 6.33, 8.33)
Table 3.  Assessment supplier 1 in two performance levels
CriteriaSUPPLIER 1 IN LEVEL 1SUPPLIER 1 IN LEVEL 2
DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 1DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 2
Delivery (Lead time)VHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Defect rateMHMML(3, 5, 7)HMHM(5, 7, 8.66)
Financial positionMHMM(3.66, 5.66, 7.66)MHMHM(4.33, 6.33, 8.33)
TrainingHMHH(6.33, 8.33, 9.66)HHVH(7.66, 9.33, 10)
Number of personnelVHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Number of personnelMHMMH(4.33, 6.33, 8.33)HMHH(6.33, 8.33, 9.66)
Green packagingMMHM(3.66, 5.66, 7.66)MHHMH(5.66, 7.66, 9.33)
Process flexibilityMMHMH(4.33, 6.33, 8.33)MHHH(6.33, 8.33, 9.66)
Process safetyMHHH(6.33, 8.33, 9.66)HVHVH(8.33, 9.66, 10)
CriteriaSUPPLIER 1 IN LEVEL 1SUPPLIER 1 IN LEVEL 2
DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 1DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 2
Delivery (Lead time)VHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Defect rateMHMML(3, 5, 7)HMHM(5, 7, 8.66)
Financial positionMHMM(3.66, 5.66, 7.66)MHMHM(4.33, 6.33, 8.33)
TrainingHMHH(6.33, 8.33, 9.66)HHVH(7.66, 9.33, 10)
Number of personnelVHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Number of personnelMHMMH(4.33, 6.33, 8.33)HMHH(6.33, 8.33, 9.66)
Green packagingMMHM(3.66, 5.66, 7.66)MHHMH(5.66, 7.66, 9.33)
Process flexibilityMMHMH(4.33, 6.33, 8.33)MHHH(6.33, 8.33, 9.66)
Process safetyMHHH(6.33, 8.33, 9.66)HVHVH(8.33, 9.66, 10)
Table 4.  Final score for supplier 1 in two performance levels
CriteriaFinal score 1Final score 2a1l1a1l2
Delivery (Lead time)(213.41,473.49,739.95)(248,462.33,760)411.6490.1
Defect rate(39.52,160.17,410.72)(64.8,219.52,496.73)203.3260.3
Financial position(58,202.78,488.76)(66.56,222.26,523.56)249.8270.3
Training(250.79,552.57,870.63)(297.92,607.84,892.8)557.9599.5
Number of personnel(277.34,574.46,870.63)(325.36,627.45,892.8)574.1615.1
Reusable(121.39,328.1,630.8)(172.36,432.26,729.6)360444.7
Green packaging(117.64,328.1,630.8)(183,445.28,771.9)358.8466.7
Process flexibility(55.72,197.56,479.4)(81.64,260.28,554.49)244.2298.7
Process safety(97.52,292.82,605.56)(128.484,292.82,630.8)331.9350.6
CriteriaFinal score 1Final score 2a1l1a1l2
Delivery (Lead time)(213.41,473.49,739.95)(248,462.33,760)411.6490.1
Defect rate(39.52,160.17,410.72)(64.8,219.52,496.73)203.3260.3
Financial position(58,202.78,488.76)(66.56,222.26,523.56)249.8270.3
Training(250.79,552.57,870.63)(297.92,607.84,892.8)557.9599.5
Number of personnel(277.34,574.46,870.63)(325.36,627.45,892.8)574.1615.1
Reusable(121.39,328.1,630.8)(172.36,432.26,729.6)360444.7
Green packaging(117.64,328.1,630.8)(183,445.28,771.9)358.8466.7
Process flexibility(55.72,197.56,479.4)(81.64,260.28,554.49)244.2298.7
Process safety(97.52,292.82,605.56)(128.484,292.82,630.8)331.9350.6
Table 5.  score of supplier k in criteria l in performance level w
aklwk1k2k3k4k5
l1.w1411.6372.5367.7433.4371.1
l2.w1203.3505.9563270.2288.1
l3.w1249.8420.6499.4525.2473.7
l4.w1557.9425.8345.8248.1478.4
l5.w1574.1410.9505.6383.2573.7
l6.w1360225.6561.3491384.1
l7.w1358.8523.9232.9280.4366.7
l8.w1244.2217.6300.8477.9307.8
l9.w1331.9204.7234.2533.9283.9
l1.w2490.1409.7404.4476.7408.2
l2.w2260.3556.4619.3297.2316.9
l3.w2270.3462.6549.3577.7521.1
l4.w2599.5638.7518.7372.1717.6
l5.w2615.1616.3758.4574.8860.5
l6.w2444.7239.1594.9520.4407.1
l7.w2466.7555.3246.8297.2388.7
l8.w2298.7243.7336.8535.2344.7
l9.w2350.6229.2262.3597.9317.9
aklwk1k2k3k4k5
l1.w1411.6372.5367.7433.4371.1
l2.w1203.3505.9563270.2288.1
l3.w1249.8420.6499.4525.2473.7
l4.w1557.9425.8345.8248.1478.4
l5.w1574.1410.9505.6383.2573.7
l6.w1360225.6561.3491384.1
l7.w1358.8523.9232.9280.4366.7
l8.w1244.2217.6300.8477.9307.8
l9.w1331.9204.7234.2533.9283.9
l1.w2490.1409.7404.4476.7408.2
l2.w2260.3556.4619.3297.2316.9
l3.w2270.3462.6549.3577.7521.1
l4.w2599.5638.7518.7372.1717.6
l5.w2615.1616.3758.4574.8860.5
l6.w2444.7239.1594.9520.4407.1
l7.w2466.7555.3246.8297.2388.7
l8.w2298.7243.7336.8535.2344.7
l9.w2350.6229.2262.3597.9317.9
[1]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[2]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[3]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[4]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

[5]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[6]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[7]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[8]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[9]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[10]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[11]

Lifen Jia, Wei Dai. Uncertain spring vibration equation. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021073

[12]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025

[13]

Mohammed Abdelghany, Amr B. Eltawil, Zakaria Yahia, Kazuhide Nakata. A hybrid variable neighbourhood search and dynamic programming approach for the nurse rostering problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2051-2072. doi: 10.3934/jimo.2020058

[14]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[15]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[16]

Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039

[17]

Caichun Chai, Tiaojun Xiao, Zhangwei Feng. Evolution of revenue preference for competing firms with nonlinear inverse demand. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021071

[18]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[19]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[20]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (127)
  • HTML views (561)
  • Cited by (0)

[Back to Top]