• Previous Article
    Solving routing and wavelength assignment problem with maximum edge-disjoint paths
  • JIMO Home
  • This Issue
  • Next Article
    Scheduling jobs with controllable processing time, truncated job-dependent learning and deterioration effects
April  2017, 13(2): 1041-1064. doi: 10.3934/jimo.2016061

A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels

Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, 15719-14911 Tehran, Iran

* Corresponding author: Masoud Mohammadzadeh

Received  July 2015 Revised  August 2016 Published  October 2016

In the supply chain management, configuration of supply chain is the most important decision in the long term and supplier selection and order allocation are the most important decision in the medium-term that are considered separately. Considering these together can overcome the sub-optimality. This paper deals with an integrated model that has two phases. In the first phase, we present a framework for supplier selection criteria in Closed Loop Supply Chain (CLSC). In addition, we define two performance levels for each supplier based on the quantity and capability of purchasing from it to be closer to real world problem. The output of this phase is the score of each supplier in each criterion in each level. In the second phase, we propose a nonlinear multi-objective mixed integer model that determines the number and location of all facilities (strategic decision), flow in each echelon of CLSC (tactical decision) and supplier selection and order allocation (hybrid decision). The objective functions maximize profit and scores of suppliers and minimize total pollution. To solve the model, we have created a transformation based on the piecewise linearization method. The mathematical programming model illustrated by a real numerical example.

Citation: Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061
References:
[1]

S. H. Amin and J. Razmi, An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.  doi: 10.1016/j.eswa.2008.10.012.  Google Scholar

[2]

S. H. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.  doi: 10.1016/j.eswa.2011.12.056.  Google Scholar

[3]

A. AzaronK. N. BrownS. A. Tarima and M. Modarres, A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.  doi: 10.1016/j.ijpe.2008.08.002.  Google Scholar

[4]

A. AzaronK. Furmans and M. Modarres, Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.  doi: 10.1007/978-3-642-00142-0_28.  Google Scholar

[5]

A. BaghalianS. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.  doi: 10.1016/j.ejor.2012.12.017.  Google Scholar

[6]

L. T. Chen, Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.  doi: 10.1016/j.jmsy.2013.11.002.  Google Scholar

[7]

S. Y. Chou and Y. H. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.   Google Scholar

[8]

L. De BoerE. Labro and P. Morllacchi, A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.   Google Scholar

[9]

H. FallahH. Eskandari and M. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.  doi: 10.1016/j.jmsy.2015.01.005.  Google Scholar

[10]

M. FleischmannP. BeullensJ. M. Bloemhof-Ruwaard and L. N. Van Wassenhove, The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.  doi: 10.1111/j.1937-5956.2001.tb00076.x.  Google Scholar

[11]

D. Francas and S. Minner, Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.  doi: 10.1016/j.omega.2008.07.007.  Google Scholar

[12]

X. GangY. Wuyi and W. Shouyang, Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[13]

S. H. Ghodsypour and C. O'Brein, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.  doi: 10.1016/S0925-5273(97)00009-1.  Google Scholar

[14]

B. Giri and S. Sharma, Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.   Google Scholar

[15]

M. GohJ. Lim and F. Meng, A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.  doi: 10.1016/j.ejor.2006.08.028.  Google Scholar

[16]

G. GuillenF. D. MaleM. J. BagaajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.  doi: 10.1016/j.ces.2004.10.023.  Google Scholar

[17]

I. HarrisM. NaimA. PalmerA. Potter and C. Mumdord, Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of Production Economics, 131 (2011), 313-321.  doi: 10.1016/j.ijpe.2010.03.005.  Google Scholar

[18]

W. Ho, Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.  doi: 10.1016/j.ejor.2007.01.004.  Google Scholar

[19]

P. K. HumphreysY. K. Wong and F. T. Chan, Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.  doi: 10.1016/S0924-0136(03)00097-9.  Google Scholar

[20]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[21]

H. kabza, Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.   Google Scholar

[22]

C. KahramanU. Cebeci and Z. Ulukan, Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.  doi: 10.1108/09576050310503367.  Google Scholar

[23]

D. KannanR. KhodaverdiL. Olfat and A. Diabat, Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.   Google Scholar

[24]

H. J. Ko and G. W. Evans, A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.  doi: 10.1016/j.cor.2005.03.004.  Google Scholar

[25]

Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-48753-8_3.  Google Scholar

[26]

A. H. LeeH. Y. KangC. F. Hsu and H. C. Hung, A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.  doi: 10.1016/j.eswa.2008.11.052.  Google Scholar

[27]

D. H. Lee and M. Dong, Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.  doi: 10.1016/j.tre.2008.08.002.  Google Scholar

[28]

O. Listes, A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.  doi: 10.1016/j.cor.2005.03.007.  Google Scholar

[29]

A. NajlaM. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.   Google Scholar

[30]

K. R. PatiP. Vrat and P. Kumar, A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.  doi: 10.1016/j.omega.2006.04.014.  Google Scholar

[31]

S. K. PaulR. Sarker and D. Essam, Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.  doi: 10.3934/jimo.2016.12.1009.  Google Scholar

[32]

D. PeidroJ. MulaR. Poler and J. L. Verdegay, Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.  doi: 10.1016/j.fss.2009.02.021.  Google Scholar

[33]

S. pokharel and A. Mutha, Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.  doi: 10.1016/j.resconrec.2008.11.006.  Google Scholar

[34]

J. Shu and J. Sun, Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.  doi: 10.3934/jimo.2006.2.339.  Google Scholar

[35]

B. SundarakaniR. de'SouzaM. GohS. M. Wagner and S. Manikandan, Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.  doi: 10.1016/j.ijpe.2010.01.018.  Google Scholar

[36]

M. ThierryM. SalomonJ. V. Nunen and L. V. Wassenhove, Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.   Google Scholar

[37]

P. TsiakisN. Shah and C. C. Pantelides, Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.  doi: 10.1021/ie0100030.  Google Scholar

[38]

H. UsterG. EaswaranE. Akcali and S. Cetinkaya, Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.  doi: 10.1002/nav.20262.  Google Scholar

[39]

H. F. Wang and H. W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.  doi: 10.1016/j.cor.2009.06.001.  Google Scholar

[40]

C. A. WeberJ. P. Current and W. C. Benton, Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.  doi: 10.1016/0377-2217(91)90033-R.  Google Scholar

[41]

G. XieW. Yue and S. Wang, Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[42]

Q. ZhaiH. CaoX. Zhao and C. Yuan, Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.  doi: 10.1016/j.jclepro.2014.03.072.  Google Scholar

[43]

H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001. doi: 10.1007/978-94-010-0646-0.  Google Scholar

show all references

References:
[1]

S. H. Amin and J. Razmi, An integrated fuzzy model for supplier management: A case study of ISP selection and evaluation, Expert Systems with Applications, 36 (2009), 8639-8648.  doi: 10.1016/j.eswa.2008.10.012.  Google Scholar

[2]

S. H. Amin and G. Zhang, An integrated model for closed-loop supply chain configuration and supplier selection: Multi-objective approach, Expert Systems with Applications, 39 (2012), 6782-6791.  doi: 10.1016/j.eswa.2011.12.056.  Google Scholar

[3]

A. AzaronK. N. BrownS. A. Tarima and M. Modarres, A multi-objective stochastic programming approach for supply chain design considering risk, International Journal of Production Economics, 116 (2008), 129-138.  doi: 10.1016/j.ijpe.2008.08.002.  Google Scholar

[4]

A. AzaronK. Furmans and M. Modarres, Interactive multi-objective stochastic programming approaches for designing robust supply chain networks, Operations Research Proceedings 2008, (2009), 173-178.  doi: 10.1007/978-3-642-00142-0_28.  Google Scholar

[5]

A. BaghalianS. Rezapour and R. Z. Farahani, Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case, European Journal of Operational Research, 227 (2013), 199-215.  doi: 10.1016/j.ejor.2012.12.017.  Google Scholar

[6]

L. T. Chen, Dynamic co-opetitive approach of a closed loop system with remanufacturing for deteriorating items in e-markets, Journal of Manufacturing Systems, 33 (2014), 166-176.  doi: 10.1016/j.jmsy.2013.11.002.  Google Scholar

[7]

S. Y. Chou and Y. H. Chang, A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approac, Expert Systems with Applications, 34 (2008), 2241-2253.   Google Scholar

[8]

L. De BoerE. Labro and P. Morllacchi, A review of methods supporting supplier selection, European Journal of Purchasing and Supply Management, 7 (2001), 75-89.   Google Scholar

[9]

H. FallahH. Eskandari and M. Pishvaee, Competitive closed-loop supply chain network design under uncertainty, Journal of Manufacturing Systems, 37 (2015), 649-661.  doi: 10.1016/j.jmsy.2015.01.005.  Google Scholar

[10]

M. FleischmannP. BeullensJ. M. Bloemhof-Ruwaard and L. N. Van Wassenhove, The impact of product recovery on logistics network design, Productionand and Operations Management, 10 (2001), 156-173.  doi: 10.1111/j.1937-5956.2001.tb00076.x.  Google Scholar

[11]

D. Francas and S. Minner, Manufacturing network configuration in supply chains with product recovery, Omega, 37 (2009), 757-769.  doi: 10.1016/j.omega.2008.07.007.  Google Scholar

[12]

X. GangY. Wuyi and W. Shouyang, Optimal Selection Of Cleaner Products In A Green Supply Chain With Risk Aversion, Journal Of Industrial And Mangement Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[13]

S. H. Ghodsypour and C. O'Brein, A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming, International Journal of Production Economics, 56/57 (1998), 199-212.  doi: 10.1016/S0925-5273(97)00009-1.  Google Scholar

[14]

B. Giri and S. Sharma, Optimizing a closed-loop supply chain with manufacturing defects, Journal of Manufacturing Systems, 35 (2015), 92-111.   Google Scholar

[15]

M. GohJ. Lim and F. Meng, A stochastic model for risk management in global chain networks, European Journal of Operational Research, 182 (2007), 164-173.  doi: 10.1016/j.ejor.2006.08.028.  Google Scholar

[16]

G. GuillenF. D. MaleM. J. BagaajewiczA. Espuna and L. Puigjaner, Multiobjective supply chain design under uncertainty, Chemical Engineering Science, 60 (2005), 1535-1553.  doi: 10.1016/j.ces.2004.10.023.  Google Scholar

[17]

I. HarrisM. NaimA. PalmerA. Potter and C. Mumdord, Assessing the impact of cost optimization based on infrastructure modelling on CO2 emissions, International Journal of Production Economics, 131 (2011), 313-321.  doi: 10.1016/j.ijpe.2010.03.005.  Google Scholar

[18]

W. Ho, Integrated analytic hierarchy process and its applications --A literature review, European Journal of Operational Research, 186 (2008), 211-228.  doi: 10.1016/j.ejor.2007.01.004.  Google Scholar

[19]

P. K. HumphreysY. K. Wong and F. T. Chan, Integrating environmental criteria into the supplier selection process, Journal of Materials Processing Technology, 138 (2003), 349-356.  doi: 10.1016/S0924-0136(03)00097-9.  Google Scholar

[20]

C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 186. Springer-Verlag, Berlin-New York, 1981.  Google Scholar

[21]

H. kabza, Hybrid Electric Vehicles: Overview, Encyclopedia of Electrochemical Power Sources, (2009), 249-268.   Google Scholar

[22]

C. KahramanU. Cebeci and Z. Ulukan, Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (2003), 382-394.  doi: 10.1108/09576050310503367.  Google Scholar

[23]

D. KannanR. KhodaverdiL. Olfat and A. Diabat, Integrated fuzzy multi criteria decision making method and multiobjective programming approach for supplier selection and order allocation in a green supply chain, Journal of Cleaner Production, 47 (2013), 355-367.   Google Scholar

[24]

H. J. Ko and G. W. Evans, A genetic-based heuristic for the dynamic integrated forward/reverse logistics network for 3PLs, Computers and Operations Research, 34 (2007), 346-366.  doi: 10.1016/j.cor.2005.03.004.  Google Scholar

[25]

Y. J. Lai and C. L. Hwang, Fuzzy Mathematical Programming: Methods and Applications, Lecture Notes in Economics and Mathematical Systems, 394. Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-48753-8_3.  Google Scholar

[26]

A. H. LeeH. Y. KangC. F. Hsu and H. C. Hung, A green supplier selection model for high-tech industry, Expert Systems with Applications, 36 (2009), 7917-7927.  doi: 10.1016/j.eswa.2008.11.052.  Google Scholar

[27]

D. H. Lee and M. Dong, Dynamic network design for reverse logistics operations under uncertainty, Transportation Research Part E: Logistics and Transportation Review, 45 (2009), 61-71.  doi: 10.1016/j.tre.2008.08.002.  Google Scholar

[28]

O. Listes, A generic stochastic model for supply-and-return network design, Computers and Operations Research, 34 (2007), 417-442.  doi: 10.1016/j.cor.2005.03.007.  Google Scholar

[29]

A. NajlaM. Haouari and E. Hassini, Supplier selection and order lot sizing modeling: A review, Computers and operations research, 34 (2007), 3516-3540.   Google Scholar

[30]

K. R. PatiP. Vrat and P. Kumar, A goal programming model for paper recycling system, Omega, 36 (2008), 405-417.  doi: 10.1016/j.omega.2006.04.014.  Google Scholar

[31]

S. K. PaulR. Sarker and D. Essam, Managing risk and disruption in production-inventory and supply chain systems: A review, Journal Of Industrial And Management Optimization, 12 (2016), 1009-1029.  doi: 10.3934/jimo.2016.12.1009.  Google Scholar

[32]

D. PeidroJ. MulaR. Poler and J. L. Verdegay, Fuzzy optimization for supply chain planning under supply, demand and process uncertainties, Fuzzy Sets and Systems, 160 (2009), 2640-2657.  doi: 10.1016/j.fss.2009.02.021.  Google Scholar

[33]

S. pokharel and A. Mutha, Perspectives in reverse logistics: A review, Resources, Conservation and Recycling, 53 (2009), 175-182.  doi: 10.1016/j.resconrec.2008.11.006.  Google Scholar

[34]

J. Shu and J. Sun, Designing the distribution network for an integrated supply chain, Journal of Industrial and Management Optimization, 2 (2006), 339-349.  doi: 10.3934/jimo.2006.2.339.  Google Scholar

[35]

B. SundarakaniR. de'SouzaM. GohS. M. Wagner and S. Manikandan, Modeling carbon footprints across the supply chain, International Journal of Production Economics, 128 (2010), 43-50.  doi: 10.1016/j.ijpe.2010.01.018.  Google Scholar

[36]

M. ThierryM. SalomonJ. V. Nunen and L. V. Wassenhove, Strategic issues in product recovery management, California Management Review, 37 (1995), 114-135.   Google Scholar

[37]

P. TsiakisN. Shah and C. C. Pantelides, Design of multi echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40 (2001), 3585-3604.  doi: 10.1021/ie0100030.  Google Scholar

[38]

H. UsterG. EaswaranE. Akcali and S. Cetinkaya, Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model, Naval Research Logistics, 54 (2007), 890-907.  doi: 10.1002/nav.20262.  Google Scholar

[39]

H. F. Wang and H. W. Hsu, A closed-loop logistic model with a spanning-tree based genetic algorithm, Computers and Operations Research, 37 (2010), 376-389.  doi: 10.1016/j.cor.2009.06.001.  Google Scholar

[40]

C. A. WeberJ. P. Current and W. C. Benton, Vendor selection criteria and methods, European Journal of Operational Research, 50 (1991), 2-18.  doi: 10.1016/0377-2217(91)90033-R.  Google Scholar

[41]

G. XieW. Yue and S. Wang, Optimal selection of cleaner products in a green supply chain with risk aversion, Journal Of Industrial Aand Management Optimization, 11 (2015), 515-528.  doi: 10.3934/jimo.2015.11.515.  Google Scholar

[42]

Q. ZhaiH. CaoX. Zhao and C. Yuan, Assessing application potential of clean energy supply for greenhouse gas emission mitigation: a case study on General Motors global manufacturing, Journal of Cleaner Production, 75 (2014), 11-19.  doi: 10.1016/j.jclepro.2014.03.072.  Google Scholar

[43]

H. Zimmermann, Fuzzy Set Theory And its Applications, Kluwer Academic Publishers, Boston, 2001. doi: 10.1007/978-94-010-0646-0.  Google Scholar

Figure 1.  Proposed supplier selection criteria classification
1]">Figure 2.  linguistic scale presented by Amin and Razmi [1]
Figure 3.  Approximation of accumulative standard normal distribution function 6
Figure 4.  The solution of the numerical example network
Table 1.  Importance of categories
CategoryDM1DM2DM3TFN1TFN2TFN3Weight of Category
AbilityMMMH(3, 5, 7)(3, 5, 7)(5, 7, 9)(3.66, 5.66, 7.66)
ResponsibilityMHHMH(5, 7, 9)(7, 9, 10)(5, 7, 9)(5.66, 7.66, 9.33)
GreenHHVH(7, 9, 10)(7, 9, 10)(9, 10, 10)(7.66, 9.33, 10)
Process-relatedMMHM(3, 5, 7)(5, 7, 9)(3, 5, 7)(3.66, 5.66, 7.66)
CategoryDM1DM2DM3TFN1TFN2TFN3Weight of Category
AbilityMMMH(3, 5, 7)(3, 5, 7)(5, 7, 9)(3.66, 5.66, 7.66)
ResponsibilityMHHMH(5, 7, 9)(7, 9, 10)(5, 7, 9)(5.66, 7.66, 9.33)
GreenHHVH(7, 9, 10)(7, 9, 10)(9, 10, 10)(7.66, 9.33, 10)
Process-relatedMMHM(3, 5, 7)(5, 7, 9)(3, 5, 7)(3.66, 5.66, 7.66)
Table 2.  Importance of criteria
CriteriaDM1DM2DM3Weight of criteria
Delivery (Lead time)VHHH(8.33, 9.66, 10)
Defect rateMHMM(3.66, 5.66, 7.66)
Financial positionMHMMH(4.33, 6.33, 8.33)
TrainingHMHVH(7, 8.66, 9.66)
Number of personnelVHHMH(7, 8.66, 9.66)
Number of personnelMHMM(3.66, 5.66, 7.66)
Green packagingMMHMH(4.33, 6.33, 8.33)
Process flexibilityMMHM(3.66, 5.66, 7.66)
Process safetyMHHMH(4.33, 6.33, 8.33)
CriteriaDM1DM2DM3Weight of criteria
Delivery (Lead time)VHHH(8.33, 9.66, 10)
Defect rateMHMM(3.66, 5.66, 7.66)
Financial positionMHMMH(4.33, 6.33, 8.33)
TrainingHMHVH(7, 8.66, 9.66)
Number of personnelVHHMH(7, 8.66, 9.66)
Number of personnelMHMM(3.66, 5.66, 7.66)
Green packagingMMHMH(4.33, 6.33, 8.33)
Process flexibilityMMHM(3.66, 5.66, 7.66)
Process safetyMHHMH(4.33, 6.33, 8.33)
Table 3.  Assessment supplier 1 in two performance levels
CriteriaSUPPLIER 1 IN LEVEL 1SUPPLIER 1 IN LEVEL 2
DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 1DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 2
Delivery (Lead time)VHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Defect rateMHMML(3, 5, 7)HMHM(5, 7, 8.66)
Financial positionMHMM(3.66, 5.66, 7.66)MHMHM(4.33, 6.33, 8.33)
TrainingHMHH(6.33, 8.33, 9.66)HHVH(7.66, 9.33, 10)
Number of personnelVHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Number of personnelMHMMH(4.33, 6.33, 8.33)HMHH(6.33, 8.33, 9.66)
Green packagingMMHM(3.66, 5.66, 7.66)MHHMH(5.66, 7.66, 9.33)
Process flexibilityMMHMH(4.33, 6.33, 8.33)MHHH(6.33, 8.33, 9.66)
Process safetyMHHH(6.33, 8.33, 9.66)HVHVH(8.33, 9.66, 10)
CriteriaSUPPLIER 1 IN LEVEL 1SUPPLIER 1 IN LEVEL 2
DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 1DM1DM2DM3ASSESSMENT SUPPLIER 1 IN LEVEL 2
Delivery (Lead time)VHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Defect rateMHMML(3, 5, 7)HMHM(5, 7, 8.66)
Financial positionMHMM(3.66, 5.66, 7.66)MHMHM(4.33, 6.33, 8.33)
TrainingHMHH(6.33, 8.33, 9.66)HHVH(7.66, 9.33, 10)
Number of personnelVHHMH(7, 8.66, 9.66)VHVHH(8.33, 9.66, 10)
Number of personnelMHMMH(4.33, 6.33, 8.33)HMHH(6.33, 8.33, 9.66)
Green packagingMMHM(3.66, 5.66, 7.66)MHHMH(5.66, 7.66, 9.33)
Process flexibilityMMHMH(4.33, 6.33, 8.33)MHHH(6.33, 8.33, 9.66)
Process safetyMHHH(6.33, 8.33, 9.66)HVHVH(8.33, 9.66, 10)
Table 4.  Final score for supplier 1 in two performance levels
CriteriaFinal score 1Final score 2a1l1a1l2
Delivery (Lead time)(213.41,473.49,739.95)(248,462.33,760)411.6490.1
Defect rate(39.52,160.17,410.72)(64.8,219.52,496.73)203.3260.3
Financial position(58,202.78,488.76)(66.56,222.26,523.56)249.8270.3
Training(250.79,552.57,870.63)(297.92,607.84,892.8)557.9599.5
Number of personnel(277.34,574.46,870.63)(325.36,627.45,892.8)574.1615.1
Reusable(121.39,328.1,630.8)(172.36,432.26,729.6)360444.7
Green packaging(117.64,328.1,630.8)(183,445.28,771.9)358.8466.7
Process flexibility(55.72,197.56,479.4)(81.64,260.28,554.49)244.2298.7
Process safety(97.52,292.82,605.56)(128.484,292.82,630.8)331.9350.6
CriteriaFinal score 1Final score 2a1l1a1l2
Delivery (Lead time)(213.41,473.49,739.95)(248,462.33,760)411.6490.1
Defect rate(39.52,160.17,410.72)(64.8,219.52,496.73)203.3260.3
Financial position(58,202.78,488.76)(66.56,222.26,523.56)249.8270.3
Training(250.79,552.57,870.63)(297.92,607.84,892.8)557.9599.5
Number of personnel(277.34,574.46,870.63)(325.36,627.45,892.8)574.1615.1
Reusable(121.39,328.1,630.8)(172.36,432.26,729.6)360444.7
Green packaging(117.64,328.1,630.8)(183,445.28,771.9)358.8466.7
Process flexibility(55.72,197.56,479.4)(81.64,260.28,554.49)244.2298.7
Process safety(97.52,292.82,605.56)(128.484,292.82,630.8)331.9350.6
Table 5.  score of supplier k in criteria l in performance level w
aklwk1k2k3k4k5
l1.w1411.6372.5367.7433.4371.1
l2.w1203.3505.9563270.2288.1
l3.w1249.8420.6499.4525.2473.7
l4.w1557.9425.8345.8248.1478.4
l5.w1574.1410.9505.6383.2573.7
l6.w1360225.6561.3491384.1
l7.w1358.8523.9232.9280.4366.7
l8.w1244.2217.6300.8477.9307.8
l9.w1331.9204.7234.2533.9283.9
l1.w2490.1409.7404.4476.7408.2
l2.w2260.3556.4619.3297.2316.9
l3.w2270.3462.6549.3577.7521.1
l4.w2599.5638.7518.7372.1717.6
l5.w2615.1616.3758.4574.8860.5
l6.w2444.7239.1594.9520.4407.1
l7.w2466.7555.3246.8297.2388.7
l8.w2298.7243.7336.8535.2344.7
l9.w2350.6229.2262.3597.9317.9
aklwk1k2k3k4k5
l1.w1411.6372.5367.7433.4371.1
l2.w1203.3505.9563270.2288.1
l3.w1249.8420.6499.4525.2473.7
l4.w1557.9425.8345.8248.1478.4
l5.w1574.1410.9505.6383.2573.7
l6.w1360225.6561.3491384.1
l7.w1358.8523.9232.9280.4366.7
l8.w1244.2217.6300.8477.9307.8
l9.w1331.9204.7234.2533.9283.9
l1.w2490.1409.7404.4476.7408.2
l2.w2260.3556.4619.3297.2316.9
l3.w2270.3462.6549.3577.7521.1
l4.w2599.5638.7518.7372.1717.6
l5.w2615.1616.3758.4574.8860.5
l6.w2444.7239.1594.9520.4407.1
l7.w2466.7555.3246.8297.2388.7
l8.w2298.7243.7336.8535.2344.7
l9.w2350.6229.2262.3597.9317.9
[1]

Maedeh Agahgolnezhad Gerdrodbari, Fatemeh Harsej, Mahboubeh Sadeghpour, Mohammad Molani Aghdam. A robust multi-objective model for managing the distribution of perishable products within a green closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021107

[2]

Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021181

[3]

Yi Jing, Wenchuan Li. Integrated recycling-integrated production - distribution planning for decentralized closed-loop supply chain. Journal of Industrial & Management Optimization, 2018, 14 (2) : 511-539. doi: 10.3934/jimo.2017058

[4]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2019, 15 (1) : 199-219. doi: 10.3934/jimo.2018039

[5]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[6]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[7]

Abdolhossein Sadrnia, Amirreza Payandeh Sani, Najme Roghani Langarudi. Sustainable closed-loop supply chain network optimization for construction machinery recovering. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2389-2414. doi: 10.3934/jimo.2020074

[8]

Dingzhong Feng, Xiaofeng Zhang, Ye Zhang. Collection decisions and coordination in a closed-loop supply chain under recovery price and service competition. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021117

[9]

Zhidan Wu, Xiaohu Qian, Min Huang, Wai-Ki Ching, Hanbin Kuang, Xingwei Wang. Channel leadership and recycling channel in closed-loop supply chain: The case of recycling price by the recycling party. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3247-3268. doi: 10.3934/jimo.2020116

[10]

Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1389-1414. doi: 10.3934/jimo.2019008

[11]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[12]

Fatemeh Kangi, Seyed Hamid Reza Pasandideh, Esmaeil Mehdizadeh, Hamed Soleimani. The optimization of a multi-period multi-product closed-loop supply chain network with cross-docking delivery strategy. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021118

[13]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial & Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[14]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[15]

Arman Hamedirostami, Alireza Goli, Yousef Gholipour-Kanani. Green cross-dock based supply chain network design under demand uncertainty using new metaheuristic algorithms. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021105

[16]

Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267

[17]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[18]

Xiaochen Sun, Fei Hu, Yancong Zhou, Cheng-Chew Lim. Optimal acquisition, inventory and production decisions for a closed-loop manufacturing system with legislation constraint. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1355-1373. doi: 10.3934/jimo.2015.11.1355

[19]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete & Continuous Dynamical Systems, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[20]

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano. Robust closed-loop control of plasma glycemia: A discrete-delay model approach. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 455-468. doi: 10.3934/dcdsb.2009.12.455

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (169)
  • HTML views (574)
  • Cited by (0)

[Back to Top]