\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Solving routing and wavelength assignment problem with maximum edge-disjoint paths

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Figure(13) / Table(5) Related Papers Cited by
  • The routing and wavelength assignment (RWA) problem in wave-length-division multiplexing optical networks is critically important for increasing the efficiency of wavelength-routed all-optical networks. Given the physical network structure and a set of connection requests, the problem aims to establishing routes for the requests and assigning a wavelength to each of them, subject to the wavelength continuous and wavelength clash constraints. The objective is to minimize he number of required wavelengths to satisfy all requests. The RWA problem was proven to be NP-hard and has been investigated for decades. In this paper, an algorithm based on the maximum edge-disjoint paths is proposed to tackle the RWA problem. Its performance is verified by experiments on some realistic network topologies. Compared with the state-of-the-art bin-packing based methods and the particle swarm optimization algorithm, the proposed method can find the best solution among all testing instances in reasonable computing time.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Pseudocode of FD(FFD) Algorithm

    Figure 2.  Pseudocode of FD(FFD) Algorithm

    Figure 3.  Pseudocode of PSO Algorithm

    Figure 4.  Pseudocode of a basic MEDP-RWA algorithm

    Figure 5.  Pseudocode of GMR algorithm

    Figure 6.  Number of times that the best value is achieved by different methods

    Figure 7.  Frequency graphs of testing results on zib54

    Figure 8.  Frequency graphs of testing results on ta2

    Figure 9.  Frequency graphs of testing results on Germany50

    Figure 10.  Relative difference of computational time on Norway

    Figure 11.  Relative difference of computational time on giul

    Figure 12.  Relative difference of computational time on graph Germany

    Figure 13.  Relative difference of computational time on graph ta2

    Table 1.  Main quantitative characteristics of testing networks

    Graph$\left | V \right |$$\left | E \right |$Min.Avg.Max.Diameter
    CHNNET152733.655
    NSF162523.144
    New York164926.1113
    APPANET203233.246
    EON203923.975
    France254523.6105
    Norway275123.867
    cost266375723.158
    janos-us-ca396723.1510
    giul398634.486
    piro40408944.557
    USAnet467523.3511
    Germany50508823.559
    zib54548013.0108
    ta26510813.3108
    (Min., Avg. and Max. denote the minimum, average and maximum degree, respectively)
     | Show Table
    DownLoad: CSV

    Table 2.  Results of GMR and bin-packing based methods (time unit: sec)

    GA_MEDP_RWA (GMR)FFFFDBFBFD
    instancemaxavgminavg time# wl$t_{FF}$# wl$t_{FFD}$# wl$t_{BF}$# wl$t_{BFD}$
    CHNNET_0244.042.0740.2440.1440.1150.14
    CHNNET_0454.443.0250.1840.1550.2340.26
    CHNNET_061111.01110.66110.70110.62110.81110.96
    CHNNET_081414.01413.50151.02141.17141.21141.51
    CHNNET_11615.01516.31151.48151.42161.75152.20
    NSF_0255.052.4160.3450.1760.1960.18
    NSF_0487.375.8090.3790.3580.5280.50
    NSF_0698.887.97100.46100.4990.5990.64
    NSF_081413.21315.11171.06151.10141.50141.47
    NSF_11716.61622.89191.70171.45171.96172.08
    NewYork_0222.021.3720.1420.0820.0720.08
    NewYork_0433.032.6530.2330.2030.2330.23
    NewYork_0654.143.9340.3340.3440.3440.33
    NewYork_0876.066.7570.6460.5870.6260.81
    NewYork_188.087.0380.7380.8081.0282.30
    ARPANET_02109.1910.5890.5590.5390.6490.86
    ARPANET_041312.11216.96121.05121.29121.31121.76
    ARPANET_062121.02125.98212.70212.68213.39214.58
    ARPANET_082929.02932.31305.46296.14307.822910.94
    ARPANET_13333.03362.85346.85337.773410.193312.68
    EON_0243.133.1930.2240.1740.3440.36
    EON_0498.3814.74101.1091.1481.5381.54
    EON_061111.01117.52131.21111.18111.94111.90
    EON_081413.71326.63162.20132.99133.61133.72
    EON_11918.11838.17223.64183.58185.77185.73
    France_0288.088.8781.3081.2781.5781.72
    France _041312.81216.05144.29134.90135.14136.03
    France _062222.02239.07228.732210.552211.692215.27
    France _082726.32647.092813.252714.002718.532624.20
    France _13434.03460.093422.543423.993429.933435.84
     | Show Table
    DownLoad: CSV

    Table 3.  Results of GMR and bin-packing based methods (cont'd)

    GA_MEDP_RWA (GMR)FFFFDBFBFD
    instancemaxavgminavg time# wl$t_{FF}$# wl$t_{FFD}$# wl$t_{BF}$# wl$t_{BFD}$
    Norway_0298.689.26101.6781.7891.9082.17
    Norway _041514.61418.47153.75154.12154.56155.43
    Norway _062221.42132.84227.87228.20229.732212.32
    Norway _083029.52946.413115.053016.593119.793024.59
    Norway _13736.63663.773721.993623.753828.583636.13
    cost266_021918.21846.68197.34187.441910.381912.40
    cost266_043534.133159.693527.283328.583636.353547.28
    cost266_065453.153237.555467.185370.905598.0053117.30
    cost266_086867.267275.2967120.7368144.2269190.5568273.40
    janos-us-ca_022626.02654.752716.612616.532727.402727.58
    janos-us-ca_044039.63997.424249.523959.494370.754088.45
    janos-us-ca_066867.867210.3671110.9969124.1072157.5068200.32
    janos-us-ca_088988.288326.3992199.0992212.1693257.3991345.67
    giul_021110.31026.93107.40108.11108.891011.24
    giul_042120.21982.661929.101931.701937.421946.16
    giul_062524.624150.732548.912555.962559.102473.12
    giul_083634.934226.8535113.8534125.2036134.2534181.70
    piro40_0217171755.511710.671712.581715.201718.50
    piro40_04282828118.502834.982838.002843.052854.44
    piro40_06464646208.814661.984668.004684.3346109.15
    piro40_08606060338.6160105.9760119.3560140.2060181.52
    USAnet_022524.02386.132535.622637.952645.152556.09
    USAnet_044745.945355.6447130.4345147.7648176.4345228.50
    USAnet_066766.165422.6368244.0065287.5868346.6666432.89
    USAnet_088886.585490.2088475.6985544.9889587.1186791.38
    Germany50_022120.720109.282135.862136.102146.102258.58
    Germany50_044544.243350.2445152.9044163.0048217.6048276.50
    Germany50_066160.560584.9263347.7061410.6163430.8965544.74
    Germany50_087674.773921.5977552.5075725.9079843.70761098.40
    zib54_023231.130149.443352.283155.013577.703391.67
    zib54_046765.765406.9067209.8065220.5073304.6471379.55
    zib54_069290.088762.5691442.9589522.8599696.7898889.98
    zib54_08122119.21171446.41117994.60117939.601301229.601271457.22
    ta2_023534.634411.5935148.9334163.0035188.7535250.99
    ta2_047270.169945.7972507.3069542.5073635.5770813.04
    ta2_069997.4961865.20981311.70981484.001001881.30972047.40
    ta2_08131129.71282835.571301935.301292577.901352644.431283713.46
     | Show Table
    DownLoad: CSV

    Table 4.  Results of GMR and PSO (time unit: sec)

    GA_MEDP_RWAPSO
    instancemaxavgminavg timemaxavgminavg time
    CHNNET_0244.042.0775.9512.97
    CHNNET_0454.443.0297.5718.60
    CHNNET_061111.01110.661815.51330.39
    CHNNET_081414.01413.502420.41848.95
    CHNNET_11615.01516.312521.51878.96
    NSF_0255.052.4176.056.75
    NSF_0487.375.80109.0813.75
    NSF_0698.887.971110.0916.19
    NSF_081413.21315.111715.51429.02
    NSF_11716.61622.892018.91836.03
    NewYork_0222.021.3732.927.37
    NewYork _0433.032.6565.2418.78
    NewYork _0654.143.9386.8625.51
    NewYork _0876.066.75109.1838.35
    NewYork _188.087.031210.71050.17
    ARPANET_02109.1910.581311.31021.30
    ARPANET_041312.11216.961916.31462.15
    ARPANET_062121.02125.982824.92293.86
    ARPANET_082929.02932.314036.533133.70
    ARPANET_13333.03362.854641.236172.60
    EON_0243.133.1954.3410.40
    EON_0498.3814.741210.61035.34
    EON_061111.01117.521513.01246.61
    EON_081413.71326.632018.21748.92
    EON_11918.11838.172522.92273.32
    France_0288.088.871411.51050.60
    France _041312.81216.052219.31786.48
    France _062222.02239.073430.427129.16
    France _082726.32647.094540.338290.72
    France _13434.03460.095448.945236.64
     | Show Table
    DownLoad: CSV

    Table 5.  Results of GMR and PSO (con't)

    GA_MEDP_RWAPSO
    instancemaxavgminavg timemaxavgminavg time
    Norway_0298.689.261513.11161.56
    Norway _041514.61418.472522.520101.40
    Norway _062221.42132.843732.629202.11
    Norway _083029.52946.414843.640254.75
    Norway _13736.63663.775954.149323.64
    cost266_021918.21846.682623.821105.22
    cost266_043534.133159.695450.947239.95
    cost266_065453.153237.557973.270436.38
    cost266_086867.267275.299993.488703.53
    janos-us-ca_022626.02654.754036.131288.18
    janos-us-ca_044039.63997.426660.556529.74
    janos-us-ca_066867.867210.36111102.794959.93
    janos-us-ca_088988.288326.39144134.11221239.46
    giul_021110.31026.931614.513294.44
    giul_042120.21982.663228.826451.61
    giul_062524.624150.734238.334738.65
    giul_083634.934226.855953.549990.63
    piro40_0217171755.512220.019159.88
    piro40_04282828118.503633.732300.88
    piro40_06464646208.816658.752474.73
    piro40_08606060338.618679.473684.40
    USAnet_022524.02386.134036.432446.56
    USAnet_044745.945355.647669.565983.93
    USAnet_066766.165422.6310698.1921418.73
    USAnet_088886.585490.20139126.51201715.20
    Germany50_022120.720109.283733.531379.56
    Germany50_044544.243350.247469.466683.95
    Germany50_066160.560584.9210295.791969.87
    Germany50_087674.773921.59126120.51151271.90
    zib54_023231.130149.447564.158619.63
    zib54_046765.765406.90159141.61331462.19
    zib54_069290.088762.56208195.21872955.29
    zib54_08122119.21171446.41289266.32504147.09
    ta2_023534.634411.597570.3661453.68
    ta2_047270.169945.79152141.81332852.21
    ta2_069997.4961865.20208198.71813867.39
    ta2_08131129.71282835.57284271.02585953.52
     | Show Table
    DownLoad: CSV
  • [1] D. Banerjee and B. Mukherjee, A practical approach for routing and wavelength assignment in large wavelength-routed optical networks, IEEE Journal on Selected Areas in Communications, 14 (1996), 903-908.  doi: 10.1109/49.510913.
    [2] M. J. Blesa and C. Blum, Findinge edge-disjoint paths in networks: An ant colony optimization algorithm, Journal of Mathematical Modeling and Algorithms, 6 (2007), 367-391.  doi: 10.1007/s10852-007-9060-y.
    [3] I. ChlamtacA. Ganz and G. Karmi, Lightpath communications: an approach to high bandwidth optical WAN's, IEEE Transactions on Communications, 40 (1992), 1171-1182.  doi: 10.1109/26.153361.
    [4] J. S. Choi, N. Golmie, F. Lapeyrere, F. Mouveaux and D. Su, A functional classification of routing and wavelength assignment schemes in DWDM networks: Static Case, In Proceedings of the 7th International Conference on Optical Communications and Networks, (2000), 1109-1115.
    [5] H. Choo and V. V. Shakhov, Routing and wavelength assignment in optical WDM networks with maximum quantity of edge disjoint paths, Computational Science -ICCS 2004, 3038 (2004), 1138-1145.  doi: 10.1007/978-3-540-24688-6_147.
    [6] T. FischerK. BauerP. Merz and K. Bauer, Solving the routing and wavelength assignment problem with a multilevel distributed memetic algorithm, Memetic Computing, 1 (2009), 101-123.  doi: 10.1007/s12293-008-0006-3.
    [7] X. GuanS. GuoW. Gong and C. Qiao, A new method for solving routing and wavelength assignment problems in optical networks, Journal of Lightwave Technology, 25 (2007), 1895-1909.  doi: 10.1109/JLT.2007.901344.
    [8] A. Hassan, Particle Swarm Optimization for Routing and Wavelength Assignment in Next Generation WDM Networks, Ph. D thesis, Queen Mary University of London, 2010.
    [9] C.-C. Hsu and H.-J. Cho, A genetic algorithm for the maximum edge-disjoint paths problem, Neurocomputing, 148 (2015), 17-22.  doi: 10.1016/j.neucom.2012.10.046.
    [10] C.-C. HsuH.-J. Cho and S.-C. Fang, Routing and wavelength assignment in optical networks from maximum edge-disjoint paths, Genetic and Evolutionary Computing: Advances in Intelligent Systems and Computing, 238 (2014), 95-103.  doi: 10.1007/978-3-319-01796-9_10.
    [11] Y. S. KavianA. RashediA. Mahani and Z. Ghassemlooy, Routing and wavelength assignment in optical networks using artificial bee colony algorithm, European Journal of Operational Research, 124 (2013), 1243-1249.  doi: 10.1016/j.ijleo.2012.03.022.
    [12] J. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, Ph. D thesis, Massachusetts Institute of Technology, 1996.
    [13] P. LeesutthipornchaiC. Charnsripinyo and N. Wattanapongsakorn, Solving multi-objective routing and wavelength assignment in WDM network using hybrid evolutionary computation approach, Computer Communications, 33 (2010), 2246-2259.  doi: 10.1016/j.comcom.2010.07.029.
    [14] G. Li and R. Shmha, The partition coloring problem and its application to wavelength routing and assignment, In Proceedings of the First Workshop on Optical Networks, 2000.
    [15] P. ManoharD. Manjunath and R. K. Shevgaonkar, Routing and wavelength assignment in optical networks from edge disjoint path algorithms, IEEE Communications Letters, 6 (2002), 211-213.  doi: 10.1109/4234.1001667.
    [16] A. X. MartinsC. DuhamelP. MaheyR. R. Saldanha and M. C. de Souza, Variable neighborhood descent with iterated local search for routing and wavelength assignment, Computers and Operations Research, 39 (2012), 2133-2141.  doi: 10.1016/j.cor.2011.10.022.
    [17] T. F. NoronhaM. G. C. Resende and C. C. Ribeiro, A biased random-key genetic algorithm for routing and wavelength assignment, Journal of Global Optimization, 50 (2011), 503-518.  doi: 10.1007/s10898-010-9608-7.
    [18] T. F. Noronha and C. C. Ribeiro, Routing and wavelength assignment by partition colouring, European Journal of Operational Research, 171 (2006), 797-810.  doi: 10.1016/j.ejor.2004.09.007.
    [19] A. E. Ozdaglar and D. P. Bertsekas, Routing and wavelength assignment in optical networks, IEEE/ACM Transactions on Networking, 11 (2003), 259-272.  doi: 10.1109/TNET.2003.810321.
    [20] R. PoliJ. Kennedy and T. Blackwell, Particle swarm optimization -An overview, Swarm intelligence, 1 (2007), 33-57. 
    [21] N. Skorin-Kapov, Routing and wavelength assignment in optical networks using bin packing based algorithms, European Journal of Operational Research, 177 (2007), 1167-1179.  doi: 10.1016/j.ejor.2006.01.003.
    [22] Y. WangT. H. Cheng and M. H. Lim, A Tabu search algorithm for static routing and wavelength assignment problem, IEEE Communications Letters, 9 (2005), 841-843.  doi: 10.1109/LCOMM.2005.1506721.
    [23] W. J. YoonD. H. KimM. Y. ChungT. J. Lee and H. Choo, Routing with maximum EDPs and wavelength assignment with path conflict graphs, In Proceedings of the 2006 international conference on Computational Science and Its Applications, 3981 (2006), 856-865.  doi: 10.1007/11751588_89.
    [24] H. ZangJ. P. Jue and B. Mukherjee, A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks, Optical Networks Magazine, 1 (2000), 47-60. 
  • 加载中

Figures(13)

Tables(5)

SHARE

Article Metrics

HTML views(2939) PDF downloads(729) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return