April  2017, 13(2): 1125-1147. doi: 10.3934/jimo.2016065

Pricing and remanufacturing decisions for two substitutable products with a common retailer

1. 

School of Science, Tianjin Polytechnic University, Tianjin 300387, China

2. 

School of Management, Tianjin University of Technology, Tianjin 300384, China

3. 

Business School, Nankai University, Tianjin 300071, China

* Corresponding author: Jie Wei

Received  June 2015 Published  October 2016

Fund Project: The authors wish to express their sincerest thanks to the editors and anonymous referees for their constructive comments and suggestions on the paper. We gratefully acknowledge the support of (ⅰ) National Natural Science Foundation of China (NSFC), Research Fund Nos. 71301116,71302112 for J. Zhao; (ⅱ) National Natural Science Foundation of China, Research Fund Nos. 71371186,71202162 for J. Wei; (ⅲ) National Natural Science Foundation of China (NSFC), Research Fund No. 71372100, and the Major Program of the National Social Science Fund of China(Grant No. 13 & ZD147) for Y.J., Li.

This paper studies pricing and remanufacturing decisions for two substitutable products in a supply chain with two manufacturers and one common retailer. The two manufacturers produce two substitutable products and sell them to the retailer. Specifically, the first manufacturer is a traditional manufacturer who produces the new product directly from raw material, while the second manufacturer has incorporated a remanufacturing process for used product into his original production system, so that he can manufacture a new product directly from raw material, or remanufacture part or whole of a returned unit into a new product. We establish seven game models by considering the chain members' horizontal and vertical competitions, and obtain the corresponding closed-form expressions for equilibrium solution. Then, the equilibrium characteristics with respect to the second manufacturer's remanufacturing decision and all channel members' pricing decisions are explored, the sensitivity analysis of equilibrium solution is conducted for some model parameters, and the maximal profits and equilibrium solutions obtained in different game models are compared by numerical analyses. Based on these results, some interesting and valuable economic and managerial insights are established.

Citation: Jing Zhao, Jie Wei, Yongjian Li. Pricing and remanufacturing decisions for two substitutable products with a common retailer. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1125-1147. doi: 10.3934/jimo.2016065
References:
[1]

S. Choi, Price competition in a channel structure with common retailer, Marketing Science, 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.

[2]

S. Choi, Price competition in a duopoly common retailer channel, Journal of Retailing, 72 (1996), 117-134.  doi: 10.1016/S0022-4359(96)90010-X.

[3]

T. ChoiY. Li and L. Xu, Channel leadership, performance and coordination in closed loop supply chains, International Journal of Production Economics, 146 (2013), 371-380.  doi: 10.1016/j.ijpe.2013.08.002.

[4]

X. HongX. WangD. Wang and H. Zhang, Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection, The International Journal of Advanced Manufacturing Technology, 68 (2013), 1851-1865.  doi: 10.1007/s00170-013-4982-1.

[5]

E. Lee and R. Staelin, Vertical strategic interaction: Implications for channel pricing strategy, Marketing Science, 16 (1997), 185-207.  doi: 10.1287/mksc.16.3.185.

[6]

X. LiY. Li and S. Saghafian, A Hybrid Manufacturing/Remanufacturing System with Random Remanufacturing Yield and Market-Driven Product Acquisition, IEEE Transactions on Engineering Management, 60 (2013), 424-437.  doi: 10.1109/TEM.2012.2215873.

[7]

T. W. McGuire and R. Staelin, An industry equilibrium analysis of downstream vertical integration, Marketing Science, 2 (1983), 161-192. 

[8]

S. Mitraa and S. Webster, Competition in remanufacturing and the effects of government subsidies, International Journal of Production Economics, 111 (2008), 287-298.  doi: 10.1016/j.ijpe.2007.02.042.

[9]

B. Mishra and S. Raghunathan, Retail-vs. vendor-managed inventory and brand competition, Management Science, 50 (2004), 445-457. 

[10]

S. Netessine and N. Rudi, Centralized and competitive inventory models with demand substitution, Operations Research, 51 (2003), 329-335.  doi: 10.1287/opre.51.2.329.12788.

[11]

B. Pasternack and Z. Drezner, Optimal inventory policies for substitutable commodities with stochastic demand, Naval Research Logistics, 38 (1991), 221-240.  doi: 10.1002/1520-6750(199104)38:2<221::AID-NAV3220380208>3.0.CO;2-7.

[12]

R. C. SavaskanS. Bhattacharya and L. N. Van Wassenhove, Closed-loop supply chain models with product remanufacturing, Management Science, 50 (2004), 239-252.  doi: 10.1287/mnsc.1030.0186.

[13]

R. Savaskan and L. Van Wassenhove, Reverse channel design: The case of competing retailers, Management Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.

[14]

E. Stavrulaki, Inventory decisions for substitutable products with stock-dependent demand, International Journal of Production Economics, 129 (2011), 65-78.  doi: 10.1016/j.ijpe.2010.09.002.

[15]

X. SunY. Li and K. Govindan, Integrating dynamic acquisition pricing and remanufacturing decisions under random price-sensitive returns, The International Journal of Advanced Manufacturing Technology, 68 (2013), 933-947.  doi: 10.1007/s00170-013-4954-5.

[16]

C. Tang and R. Yin, Joint ordering and pricing strategies for managing substitutable products, Production and Operations Management, 16 (2007), 138-153.  doi: 10.1111/j.1937-5956.2007.tb00171.x.

[17]

M. Trivedi, Distribution channels: An extension of exclusive retailership, Management Science, 44 (1998), 896-909.  doi: 10.1287/mnsc.44.7.896.

[18]

A. A. Tsay and N. Agrawal, Channel dynamics under price and service competition, Manufacturing & Service Operations Management, 2 (2000), 372-391.  doi: 10.1287/msom.2.4.372.12342.

[19]

C. WuC. Chen and C. Hsieh, Competitive pricing decisions in a two-echelon supply chain with horizontal and vertical competition, International Journal of Production Economics, 135 (2012), 265-274.  doi: 10.1016/j.ijpe.2011.07.020.

[20]

Y. Xia, Competitive strategies and market segmentation for suppliers with substitutable products, European Journal of Operational Research, 210 (2011), 194-203.  doi: 10.1016/j.ejor.2010.09.028.

[21]

X. Zhao and D. Atkins, Newsvendors under simultaneous price and inventory competition, Manufacturing and Service Operations Management, 10 (2008), 539-546.  doi: 10.1287/msom.1070.0186.

[22]

J. ZhaoW. Tang and J. Wei, Pricing decision for substitutable products with retail competition in a fuzzy environment, International Journal of Production Economics, 135 (2012), 144-153.  doi: 10.1016/j.ijpe.2010.12.024.

show all references

References:
[1]

S. Choi, Price competition in a channel structure with common retailer, Marketing Science, 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.

[2]

S. Choi, Price competition in a duopoly common retailer channel, Journal of Retailing, 72 (1996), 117-134.  doi: 10.1016/S0022-4359(96)90010-X.

[3]

T. ChoiY. Li and L. Xu, Channel leadership, performance and coordination in closed loop supply chains, International Journal of Production Economics, 146 (2013), 371-380.  doi: 10.1016/j.ijpe.2013.08.002.

[4]

X. HongX. WangD. Wang and H. Zhang, Decision models of closed-loop supply chain with remanufacturing under hybrid dual-channel collection, The International Journal of Advanced Manufacturing Technology, 68 (2013), 1851-1865.  doi: 10.1007/s00170-013-4982-1.

[5]

E. Lee and R. Staelin, Vertical strategic interaction: Implications for channel pricing strategy, Marketing Science, 16 (1997), 185-207.  doi: 10.1287/mksc.16.3.185.

[6]

X. LiY. Li and S. Saghafian, A Hybrid Manufacturing/Remanufacturing System with Random Remanufacturing Yield and Market-Driven Product Acquisition, IEEE Transactions on Engineering Management, 60 (2013), 424-437.  doi: 10.1109/TEM.2012.2215873.

[7]

T. W. McGuire and R. Staelin, An industry equilibrium analysis of downstream vertical integration, Marketing Science, 2 (1983), 161-192. 

[8]

S. Mitraa and S. Webster, Competition in remanufacturing and the effects of government subsidies, International Journal of Production Economics, 111 (2008), 287-298.  doi: 10.1016/j.ijpe.2007.02.042.

[9]

B. Mishra and S. Raghunathan, Retail-vs. vendor-managed inventory and brand competition, Management Science, 50 (2004), 445-457. 

[10]

S. Netessine and N. Rudi, Centralized and competitive inventory models with demand substitution, Operations Research, 51 (2003), 329-335.  doi: 10.1287/opre.51.2.329.12788.

[11]

B. Pasternack and Z. Drezner, Optimal inventory policies for substitutable commodities with stochastic demand, Naval Research Logistics, 38 (1991), 221-240.  doi: 10.1002/1520-6750(199104)38:2<221::AID-NAV3220380208>3.0.CO;2-7.

[12]

R. C. SavaskanS. Bhattacharya and L. N. Van Wassenhove, Closed-loop supply chain models with product remanufacturing, Management Science, 50 (2004), 239-252.  doi: 10.1287/mnsc.1030.0186.

[13]

R. Savaskan and L. Van Wassenhove, Reverse channel design: The case of competing retailers, Management Science, 52 (2006), 1-14.  doi: 10.1287/mnsc.1050.0454.

[14]

E. Stavrulaki, Inventory decisions for substitutable products with stock-dependent demand, International Journal of Production Economics, 129 (2011), 65-78.  doi: 10.1016/j.ijpe.2010.09.002.

[15]

X. SunY. Li and K. Govindan, Integrating dynamic acquisition pricing and remanufacturing decisions under random price-sensitive returns, The International Journal of Advanced Manufacturing Technology, 68 (2013), 933-947.  doi: 10.1007/s00170-013-4954-5.

[16]

C. Tang and R. Yin, Joint ordering and pricing strategies for managing substitutable products, Production and Operations Management, 16 (2007), 138-153.  doi: 10.1111/j.1937-5956.2007.tb00171.x.

[17]

M. Trivedi, Distribution channels: An extension of exclusive retailership, Management Science, 44 (1998), 896-909.  doi: 10.1287/mnsc.44.7.896.

[18]

A. A. Tsay and N. Agrawal, Channel dynamics under price and service competition, Manufacturing & Service Operations Management, 2 (2000), 372-391.  doi: 10.1287/msom.2.4.372.12342.

[19]

C. WuC. Chen and C. Hsieh, Competitive pricing decisions in a two-echelon supply chain with horizontal and vertical competition, International Journal of Production Economics, 135 (2012), 265-274.  doi: 10.1016/j.ijpe.2011.07.020.

[20]

Y. Xia, Competitive strategies and market segmentation for suppliers with substitutable products, European Journal of Operational Research, 210 (2011), 194-203.  doi: 10.1016/j.ejor.2010.09.028.

[21]

X. Zhao and D. Atkins, Newsvendors under simultaneous price and inventory competition, Manufacturing and Service Operations Management, 10 (2008), 539-546.  doi: 10.1287/msom.1070.0186.

[22]

J. ZhaoW. Tang and J. Wei, Pricing decision for substitutable products with retail competition in a fuzzy environment, International Journal of Production Economics, 135 (2012), 144-153.  doi: 10.1016/j.ijpe.2010.12.024.

Figure 1.  changes of optimal prices with β in MSM model
Figure 2.  changes of optimal remanufacturing effort with β in MSM model
Figure 3.  changes of optimal profits with β in MSM model
Figure 4.  changes of optimal prices with γ in MSM model
Figure 5.  changes of optimal remanufacturing effort with γ in MSM model
Figure 6.  changes of optimal profits with γ in MSM model
Figure 7.  changes of optimal prices with a in MSM model
Figure 8.  changes of optimal remanufacturing effort with a in MSM model
Figure 9.  changes of optimal profits with a in MSM model
Figure 10.  changes of optimal prices with B in MSM model
Figure 11.  changes of optimal remanufacturing effort with B in MSM model
Figure 12.  changes of optimal profits with B in MSM model
Figure 13.  changes of optimal prices with δ in MSM model
Figure 14.  changes of optimal remanufacturing effort with δ in MSM model
Figure 15.  changes of optimal profits with δ in MSM model
Table 1.  Chain members' maximum profits in different decision models
Scenario$\pi_{m1}+\pi_{m2}+\pi_{r}$$\pi_{m1}$$\pi_{m2}$$\pi_{r}$
MSB13549.72701.42713.68134.7
MSM13361.22744.02976.97640.3
MSR13357.52966.42756.97634.2
RSB13553.51351.71353.810848.0
RSM13066.11332.41672.710061.0
RSR13047.61667.61343.010037.0
NG13082.64103.74124.04854.9
Scenario$\pi_{m1}+\pi_{m2}+\pi_{r}$$\pi_{m1}$$\pi_{m2}$$\pi_{r}$
MSB13549.72701.42713.68134.7
MSM13361.22744.02976.97640.3
MSR13357.52966.42756.97634.2
RSB13553.51351.71353.810848.0
RSM13066.11332.41672.710061.0
RSR13047.61667.61343.010037.0
NG13082.64103.74124.04854.9
Table 2.  Optimal prices and remanufacturing effort in different decision models
Scenario$p_1^*$$w_1^*$$p_2^*$$w_2^*$$\tau^*$
MSB257.45114.89257.34114.680.28575
MSM264.20128.40259.58119.170.29929
MSR259.72119.44264.16128.320.25393
RSB257.3967.54257.1866.970.28650
RSM272.9282.92262.3272.320.31775
RSR262.7272.72273.1683.160.21194
NG151.35102.70151.08102.160.49893
Scenario$p_1^*$$w_1^*$$p_2^*$$w_2^*$$\tau^*$
MSB257.45114.89257.34114.680.28575
MSM264.20128.40259.58119.170.29929
MSR259.72119.44264.16128.320.25393
RSB257.3967.54257.1866.970.28650
RSM272.9282.92262.3272.320.31775
RSR262.7272.72273.1683.160.21194
NG151.35102.70151.08102.160.49893
Table 3.  Notations used in the Problem Description
SymbolDescription
$p_i$unit retail price of product $i,~i=1,2,$
$w_i$unit wholesale price of product $i,$
$c_{mi}$unit manufacturing cost of product $i,~i=1,2$
$c_{r}$unit remanufacturing cost of product $2$
$\beta$self-price sensitivity of a product's demand to its own price
$\gamma$cross-price sensitivity of one product's demand to the other product's price
$D_i$the demand for product $i,~i=1,2$
$\tau$the manufacturer 2's remanufacturing effort
$B$scaling parameter of the manufacturer 2's recycling process
SymbolDescription
$p_i$unit retail price of product $i,~i=1,2,$
$w_i$unit wholesale price of product $i,$
$c_{mi}$unit manufacturing cost of product $i,~i=1,2$
$c_{r}$unit remanufacturing cost of product $2$
$\beta$self-price sensitivity of a product's demand to its own price
$\gamma$cross-price sensitivity of one product's demand to the other product's price
$D_i$the demand for product $i,~i=1,2$
$\tau$the manufacturer 2's remanufacturing effort
$B$scaling parameter of the manufacturer 2's recycling process
[1]

Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103

[2]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

[3]

Ali Naimi Sadigh, S. Kamal Chaharsooghi, Majid Sheikhmohammady. A game theoretic approach to coordination of pricing, advertising, and inventory decisions in a competitive supply chain. Journal of Industrial and Management Optimization, 2016, 12 (1) : 337-355. doi: 10.3934/jimo.2016.12.337

[4]

Solaleh Sadat Kalantari, Maryam Esmaeili, Ata Allah Taleizadeh. Selling by clicks or leasing by bricks? A dynamic game for pricing durable products in a dual-channel supply chain. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021221

[5]

Haijiao Li, Kuan Yang, Guoqing Zhang. Optimal pricing strategy in a dual-channel supply chain: A two-period game analysis. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022072

[6]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial and Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[7]

Guirong Pan, Bing Xue, Hongchun Sun. An optimization model and method for supply chain equilibrium management problem. Mathematical Foundations of Computing, 2022, 5 (2) : 145-156. doi: 10.3934/mfc.2022001

[8]

Jingming Pan, Wenqing Shi, Xiaowo Tang. Pricing and ordering strategies of supply chain with selling gift cards. Journal of Industrial and Management Optimization, 2018, 14 (1) : 349-369. doi: 10.3934/jimo.2017050

[9]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[10]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[11]

You Zhao, Zibin Cui, Jianxin Chen, Rui Hou. Pricing and quality decisions in a supply chain with consumers' privacy concern. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021226

[12]

Ziyuan Zhang, Liying Yu. Research on optimal pricing decisions of the service supply chain oriented to strategic consumers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022096

[13]

Amin Aalaei, Hamid Davoudpour. Two bounds for integrating the virtual dynamic cellular manufacturing problem into supply chain management. Journal of Industrial and Management Optimization, 2016, 12 (3) : 907-930. doi: 10.3934/jimo.2016.12.907

[14]

Jun Li, Hairong Feng, Kun-Jen Chung. Using the algebraic approach to determine the replenishment optimal policy with defective products, backlog and delay of payments in the supply chain management. Journal of Industrial and Management Optimization, 2012, 8 (1) : 263-269. doi: 10.3934/jimo.2012.8.263

[15]

Yongtao Peng, Dan Xu, Eleonora Veglianti, Elisabetta Magnaghi. A product service supply chain network equilibrium considering risk management in the context of COVID-19 pandemic. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022094

[16]

Hamed Jafari, Soroush Safarzadeh. Producing two substitutable products under a supply chain including two manufacturers and one retailer: A game-theoretic approach. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022102

[17]

Xiaohong Chen, Kui Li, Fuqiang Wang, Xihua Li. Optimal production, pricing and government subsidy policies for a closed loop supply chain with uncertain returns. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1389-1414. doi: 10.3934/jimo.2019008

[18]

Zhenkai Lou, Fujun Hou, Xuming Lou. Optimal ordering and pricing models of a two-echelon supply chain under multipletimes ordering. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3099-3111. doi: 10.3934/jimo.2020109

[19]

Guangzhou Yan, Qinyu Song, Yaodong Ni, Xiangfeng Yang. Pricing, carbon emission reduction and recycling decisions in a closed-loop supply chain under uncertain environment. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021181

[20]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1603-1627. doi: 10.3934/jimo.2021035

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (325)
  • HTML views (388)
  • Cited by (5)

Other articles
by authors

[Back to Top]