[1]
|
G. Alefeld and G. Mayer, Interval analysis: theory and applications, Journal of Computational and Applied Mathematics, 121 (2000), 421-464.
doi: 10.1016/S0377-0427(00)00342-3.
|
[2]
|
R. D. Arnott and W. H. Wagner, The measurement and control of trading costs, Financial Analysts Journal, 46 (1990), 73-80.
doi: 10.2469/faj.v46.n6.73.
|
[3]
|
D. Bertsimas and D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs, Computers and Operations Research, 35 (2008), 3-17.
doi: 10.1016/j.cor.2006.02.011.
|
[4]
|
R. Bhattacharyya, S. Kar and D. Majumder, Majumder, Fuzzymean-variance-skewness portfolio selection models by interval analysis, Computers & Mathematics with Applications, 61 (2011), 126-137.
doi: 10.1016/j.camwa.2010.10.039.
|
[5]
|
G. C. Calafiore, Multi-period portfolio optimization with linear control policies, Automatica, 44 (2008), 2463-2473.
doi: 10.1016/j.automatica.2008.02.007.
|
[6]
|
C. Carlsson and R. Fullér, On possibilistic mean value and variance of fuzzy numbers, Fuzzy Sets and Systems, 122 (2001), 315-326.
doi: 10.1016/S0165-0114(00)00043-9.
|
[7]
|
C. Carlsson, R. Fulleér and P. Majlender, A possibilistic approach to selecting portfolios with highest utility score, Fuzzy Sets and Systems, 131 (2002), 13-21.
doi: 10.1016/S0165-0114(01)00251-2.
|
[8]
|
U. Çlikyurt and S. Öekici, Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach, European Journal of Operational Research, 179 (2007), 186-202.
|
[9]
|
X. Deng and R. J. Li, A portfolio selection model with borrowing constraint based on possibility theory, Applied Soft Computing, 12 (2012), 754-758.
doi: 10.1016/j.asoc.2011.10.017.
|
[10]
|
D. Dubois and H. Prade,
Possibility Theory, Plenum Perss, New York, 1988.
doi: 10.1007/978-1-4684-5287-7.
|
[11]
|
Y. Fang, K. K. Lai and S. Y. Wang, Portfolio rebalancing model with transaction costs based on fuzzy decision theory, European Journal of Operational Research, 175 (2006), 879-893.
|
[12]
|
S. C. Fang and S. Puthenpura,
Linear Optimization and Extensions: Theory and Algorithms, Prentice-Hall Inc, 1993.
|
[13]
|
C. D. Feinstein and M. N. Thapa, Notes: A reformation of a mean-absolute deviation portfolio optimization, Management Science, 39 (1993), 1552-1558.
|
[14]
|
S. Giove and S. Funari, Nardelli, An interval portfolio selection problems based on regret function, European Journal of Operational Research, 170 (2006), 253-264.
|
[15]
|
N. Güpinar and B. Rustem, Worst-case robust decisions for multi-period mean-variance portfolio optimization, European Journal of Operational Research, 183 (2007), 981-1000.
doi: 10.1016/j.ejor.2006.02.046.
|
[16]
|
N. Güpinar, B. Rustem and R. Settergren, Multistage stochastic mean-variance portfolio analysis with transaction cost, Innovations, in Financial and Economic Networks, 3 (2003), 46-63.
|
[17]
|
B. Heidergott, G. J. Olsder and J. V. Woude,
Max Plus at Work Modeling and Analysis of Press, synchronized systems: a course on max-plus algebra and its applications, Princeton University, 2006.
|
[18]
|
B. Hu and S. Wang, A novel approach in uncertain programming Part 1: New arithmetic and order relation for interval numbers, Journal of Industrial and Management Optimization, 2 (2006), 351-371.
doi: 10.3934/jimo.2006.2.351.
|
[19]
|
X. Huang, Risk curve and fuzzy portfolio selection, Computers and Mathematics with Applications, 55 (2008), 1102-1112.
doi: 10.1016/j.camwa.2007.06.019.
|
[20]
|
H. Ishibuchi and H. Tanaka, Multiobjective programming in optimization of the interval objective function, European Journal of Operational Research, 48 (1990), 219-225.
|
[21]
|
P. Jana, T. K. Roy and S. K. Mazumder, Multi-objective possibilistic model for portfolio selection with transaction cost, Journal of Computational and Applied Mathematics, 228 (2009), 188-196.
doi: 10.1016/j.cam.2008.09.008.
|
[22]
|
J. N. Kapur,
Maximum Entropy Models in Science and Engineering, John Wiley & Sons, Inc. , New York, 1989.
|
[23]
|
H. Konno and H. Yamazaki, Mean-absolute Deviation Portfolio Optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531.
|
[24]
|
K. K. Lai, S. Y. Wang, J. P. Xu, S. S. Zhu and Y. Fang, A class of linear interval programming problems and its application to portfolio selection, IEEE Transactions on Fuzzy Systems, 10 (2002), 698-704.
doi: 10.1109/TFUZZ.2002.805902.
|
[25]
|
T. León, V. Liem and E. Vercher, Viability of infeasible portfolio selection problems: A fuzzy approach, European Journal of Operational Research, 139 (2002), 178-189.
|
[26]
|
C. J. Li and Z. F. Li, Multi-period portfolio optimization for asset-liability management with bankrupt control, Applied Mathematics and Computation, 218 (2012), 11196-11208.
doi: 10.1016/j.amc.2012.05.010.
|
[27]
|
X. Li, Z. Qin and S. Kar, Mean-variance-skewness model for portfolio selection with fuzzy returns, European Journal of operational Research, 202 (2010), 239-247.
doi: 10.1016/j.ejor.2009.05.003.
|
[28]
|
J. Li and J. P. Xu, A class of possibilistic portfolio selection model with interval coefficients and its application, Fuzzy Optimization Decision Making, 6 (2007), 123-137.
doi: 10.1007/s10700-007-9005-y.
|
[29]
|
S. T. Liu, The mean-absolute deviation portfolio selection problem with interval valued returns, Journal of Computational and Applied Mathematics, 235 (2011), 4149-4157.
doi: 10.1016/j.cam.2011.03.008.
|
[30]
|
Y. J. Liu, W. G. Zhang and W. J. Xu, Fuzzy multi-period portfolio selection optimization models using multiple criteria, Automatica, 48 (2012), 3042-3053.
doi: 10.1016/j.automatica.2012.08.036.
|
[31]
|
Y. J. Liu, W. G. Zhang and P. Zhang, A multi-period portfolio selection optimization model by using interval analysis, Economic Modelling, 33 (2013), 113-119.
doi: 10.1016/j.econmod.2013.03.006.
|
[32]
|
H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x.
|
[33]
|
R. Moore,
Interval Analysis: Prentice Hall, New York: Englewood Cliffs, 1966.
|
[34]
|
S. J. Sadjadi, S. M. Seyedhosseini and Kh. Hassanlou, Fuzzy multi period portfolio selection with different rates for borrowing and Lending, Applied Soft Computing, 11 (2011), 3821-3826.
doi: 10.1016/j.asoc.2011.02.015.
|
[35]
|
M. G. Speranza, Linear programming models for portfolio optimization, The Journal of Finance, 14 (1993), 107-123.
|
[36]
|
E. Vercher, J. Bermudez and J. Segura, Fuzzy portfolio optimization under downside risk measures, Fuzzy Sets and Systems, 158 (2007), 769-782.
doi: 10.1016/j.fss.2006.10.026.
|
[37]
|
M. Wu, D. Kong, J. Xu and N. Huang, On interval portfolio selection problem, Fuzzy Optimization and Decision Making, 12 (2013), 289-304.
doi: 10.1007/s10700-013-9155-z.
|
[38]
|
H. L. Wu and Z. F. Li, Multi-period mean-variance portfolio selection with regime switching and a stochastic cash flow, Insurance: Mathematics and Economics, 50 (2012), 371-384.
doi: 10.1016/j.insmatheco.2012.01.003.
|
[39]
|
W. Yan and S. Li, A class of multi-period semi-variance portfolio selection with a four-factor futures price model, Journal of Applied Mathematics and Computing, 29 (2009), 19-34.
doi: 10.1007/s12190-008-0086-8.
|
[40]
|
W. Yan, R. Miao and S. R. Li, Multi-period semi-variance portfolio selection: Model and numerical solution, Applied Mathematics and Computation, 194 (2007), 128-134.
doi: 10.1016/j.amc.2007.04.036.
|
[41]
|
A. Yoshimoto, The mean-variance approach to portfolio optimization subject to transaction costs, Journal of the Operational Research Society of Japan, 39 (1996), 99-117.
|
[42]
|
M. Yu, S. Takahashi, H. Inoue and S. Y. Wang, Dynamic portfolio optimization with risk control for absolute deviation model, European Journal of Operational Research, 201 (2010), 349-364.
doi: 10.1016/j.ejor.2009.03.009.
|
[43]
|
M. Yu and S. Y. Wang, Dynamic optimal portfolio with maximum absolute deviation model, Journal of Global Optimization, 53 (2012), 363-380.
doi: 10.1007/s10898-012-9887-2.
|
[44]
|
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
doi: 10.1016/S0019-9958(65)90241-X.
|
[45]
|
W. G. Zhang, Y. J. Liu and W. J. Xu, A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs, European Journal of Operational Research, 222 (2012), 41-349.
doi: 10.1016/j.ejor.2012.04.023.
|
[46]
|
W. G. Zhang, Y. L. Wang, Z. P. Nie and Z. K. Chen, Possibilistic mean-variance models and efficient frontiers for portfolio selection problem, Information Sciences, 177 (2007), 2787-2801.
doi: 10.1016/j.ins.2007.01.030.
|
[47]
|
W. G. Zhang, X. L. Zhang and W. L. Xiao, Portfolio selection under possibilistic mean-variance utility and a SMO algorithm, European Journal of Operational Research, 197 (2009), 693-700.
doi: 10.1016/j.ejor.2008.07.011.
|
[48]
|
W. G. Zhang, Y. J. Liu and W. J. Xu, A new fuzzy programming approach for multi-period portfolio Optimization with return demand and risk control, Fuzzy Sets and Systems, 246 (2014), 107-126.
doi: 10.1016/j.fss.2013.09.002.
|
[49]
|
P. Zhang and W. G. Zhang, Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints, Fuzzy Sets and Systems, 255 (2014), 74-91.
doi: 10.1016/j.fss.2014.07.018.
|