[1]
|
D. Bayley and M. L. de Prado, The Sharpe Ratio Efficient Frontier, Journal of Risk, 15 (2012), 3-44.
doi: 10.2139/ssrn.1821643.
|
[2]
|
T. R. Bielecki, H. Q. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean--variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15 (2005), 213-244.
doi: 10.1111/j.0960-1627.2005.00218.x.
|
[3]
|
P. Chen, H. L. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, nsurance: Mathematics and Economics, 43 (2008), 456-465.
doi: 10.1016/j.insmatheco.2008.09.001.
|
[4]
|
Z. P. Chen, J. Liu and G. Li, Time consistent policy of multi-period mean-variance problem in stochastic markets, Journal of Industrial and Management Optimization, 12 (2016), 229-249.
doi: 10.3934/jimo.2016.12.229.
|
[5]
|
C. H. Chiu and X. Y. Zhou, The premium of dynamic trading, Quantitative Finance, 11 (2011), 115-123.
doi: 10.1080/14697681003685589.
|
[6]
|
V. Chow and C. W. Lai,
Conditional Sharpe Ratios Finance Research Letters, inpress, 2014, available online, http://dx.doi.org/10.1016/j.frl.2014.11.001.
|
[7]
|
X. Y. Cui, J. J. Gao and D. Li, Continuous-time mean-variance portfolio selection with finite
transactions, Stochastic analysis and applications to finance, Interdiscip. Math. Sci. , World
Sci. Publ. , Hackensack, NJ, 13 (2012), 77–98.
doi: 10.1142/9789814383585_0005.
|
[8]
|
X. Y. Cui, J. J. Gao, X. Li and D. Li, Optimal multi-period mean--variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040.
|
[9]
|
J. Cvitanic, A. Lazrak and T. Wang, Implications of the sharpe ratio as a performance measure in multi-period settings, Journal of Economic Dynamics and Control, 32 (2008), 1622-1649.
doi: 10.1016/j.jedc.2007.06.009.
|
[10]
|
D. M. Danga and P. A. Forsyth, Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton-Jacobi-Bellman equation approach, European Journal of Operational Research, 250 (2016), 827-841.
doi: 10.1016/j.ejor.2015.10.015.
|
[11]
|
V. DeMiguel, L. Garlappi and R. Uppal, Optimal versus Naive Diversification: How ineficient is the 1/N portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.
doi: 10.1093/acprof:oso/9780199744282.003.0034.
|
[12]
|
K. Dowd, Adjusting for risk: An improved Sharpe ratio, International Review of Economics and Finance, 9 (2000), 209-222.
doi: 10.1016/S1059-0560(00)00063-0.
|
[13]
|
W. H. Fleming and H. M. Soner, Controlled Markov processes and viscosity solutions, 2ed. Springer, New York, 2006.
|
[14]
|
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100.
|
[15]
|
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean--variance portfolio selection with no-shorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504.
|
[16]
|
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x.
|
[17]
|
R. C. Merton, An analytic derivation of the efficient portfolio frontier, Journal of Financial and Quantitative Analysis, 7 (1972), 1851-1872.
doi: 10.2307/2329621.
|
[18]
|
M. Schuster and B. R. Auer, A note on empirical Sharpe ratio dynamics, Economics Letters, 116 (2012), 124-128.
doi: 10.1016/j.econlet.2012.02.005.
|
[19]
|
W. F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk, Journal of Finance, 19 (1964), 425-442.
|
[20]
|
W. F. Sharpe, Mutual fund performance, Journal of Business, 39 (1966), 119-138.
doi: 10.1086/294846.
|
[21]
|
W. F. Sharpe, The Sharpe ratio, The Journal of Portfolio Management, 21 (1994), 49-58.
doi: 10.3905/jpm.1994.409501.
|
[22]
|
A. D. Roy, Safety first and the holding of assets, Econometrica, 20 (1952), 431-449.
doi: 10.2307/1907413.
|
[23]
|
Z. Wang and S. Y. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs Journal of Industrial and Management Optimization, 9 (2013), 643-657.
doi: 10.3934/jimo.2013.9.643.
|
[24]
|
H. X. Yao, Z. F. Li and S. M. Chen, Continuous-time mean-variance portfolio selection with only risky assets, Economic Modelling, 36 (2014), 244-251.
doi: 10.1016/j.econmod.2013.09.041.
|
[25]
|
H. X. Yao, Z. F. Li and Y. Z. Lai, Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate, Journal of Industrial and Management Optimization, 12 (2016), 187-209.
doi: 10.3934/jimo.2016.12.187.
|
[26]
|
V. Zakamouline and S. Koekebakker, Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance, Journal of Banking and Finance, 33 (2009), 1242-1254.
|
[27]
|
Y. Zeng, D. P. Li and A. L. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012.
|
[28]
|
X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003.
|
[29]
|
S. S. Zhu, D. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Transactions on Automatic Control, 49 (2004), 447-457.
doi: 10.1109/TAC.2004.824474.
|