
-
Previous Article
Fairness and retailer-led supply chain coordination under two different degrees of trust
- JIMO Home
- This Issue
-
Next Article
Double well potential function and its optimization in the $N$ -dimensional real space-part Ⅱ
Single server retrial queues with setup time
Division of Policy and Planning Sciences, Faculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan |
This paper considers single server retrial queues with setup time where the server is aware of the existence of retrying customers. In the basic model, the server is switched off immediately when the system becomes empty in order to save energy consumption. Arriving customers that see the server occupied join the orbit and repeat their attempt after some random time. The new feature of our models is that an arriving customer that sees the server off waits at the server and the server is turned on. The server needs some setup time to be active so as to serve the waiting customer. If the server completes a service and the orbit is not empty, it stays idle waiting for either a new or retrial customer. Under the assumption that the service time and the setup time are arbitrarily distributed, we obtain explicit expressions for the generating functions of the joint queue length. We also obtain recursive formulas for computing the moments of the queue length. We then consider an extended model where the server has a closedown time before being turned off for which an explicit solution is also obtained.
References:
[1] |
J. R. Artalejo,
Analysis of an M/G/1 queue with constant repeated attempts and server vacations, Computers and Operations Research, 24 (1997), 493-504.
doi: 10.1016/S0305-0548(96)00076-7. |
[2] |
L. A. Barroso and U. Holzle,
The case for energy-proportional computing, Computer, 40 (2007), 33-37.
doi: 10.1109/MC.2007.443. |
[3] |
W. Bischof,
Analysis of M/G/1-queues with setup times and vacations under six different service disciplines, Queueing Systems, 39 (2001), 265-301.
doi: 10.1023/A:1013992708103. |
[4] |
S. Derkic and J. E. Stafford,
Symbolic computation of moments in priority queues, INFORMS Journal on Computing, 14 (2002), 261-277.
doi: 10.1287/ijoc.14.3.261.115. |
[5] |
S. Drekic, J. E. Stafford and G. E. Willmot,
Symbolic calculation of the moments of the time of ruin, Insurance: Mathematics and Economics, 34 (2004), 109-120.
doi: 10.1016/j.insmatheco.2003.11.004. |
[6] |
T. V. Do,
M/M/1 retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75.
doi: 10.1007/s00236-009-0110-y. |
[7] |
G. I. Falin and J. G. C. Templeton, Retrial Queues Chapman and Hall, London, 1997. Google Scholar |
[8] |
A. Gandhi, M. Harchol-Balter and M. A. Kozuch,
Are sleep states effective in data centers?, Proceedings of IEEE 2012 International Green Computing Conference (IGCC), (2012), 1-10.
doi: 10.1109/IGCC.2012.6322260. |
[9] |
A. Gandhi, S. Doroudi, M. Harchol-Balter and A. Scheller-Wolf, Exact analysis of the M/M/k/setup class of Markov chains via recursive renewal reward, Proceedings of the ACM SIGMETRICS, (2013), 153-166. Google Scholar |
[10] |
A. Gandhi, S. Doroudi, M. Harchol-Balter and A. Scheller-Wolf,
Exact analysis of the M/M/k/setup class of Markov chains via recursive renewal reward, Queueing Systems, 77 (2014), 177-209.
doi: 10.1007/s11134-014-9409-7. |
[11] |
S. Kapodistria, T. Phung-Duc and J. Resing,
Linear birth/immigration-death process with binomial catastrophes, Probability in the Engineering and Informational Sciences, 30 (2016), 79-111.
doi: 10.1017/S0269964815000297. |
[12] |
V. J. Maccio and D. G. Down,
On optimal policies for energy-aware servers, Performance Evaluation, 90 (2013), 36-52.
doi: 10.1109/MASCOTS.2013.11. |
[13] |
I. Mitrani,
Managing performance and power consumption in a server farm, Annals of Operations Research, 202 (2013), 121-134.
doi: 10.1007/s10479-011-0932-1. |
[14] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi,
M/M/3/3 and M/M/4/4 retrial queues, Journal of Industrial and Management Optimization, 5 (2009), 431-451.
doi: 10.3934/jimo.2009.5.431. |
[15] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi,
State-dependent M/M/c/c+ r retrial queues with Bernoulli abandonment, Journal of Industrial and Management Optimization, 6 (2010), 517-540.
doi: 10.3934/jimo.2010.6.517. |
[16] |
T. Phung-Duc,
An explicit solution for a tandem queue with retrials and losses, Operational Research, 12 (2012), 189-207.
doi: 10.1007/s12351-011-0113-7. |
[17] |
T. Phung-Duc,
Impatient customers in power-saving data centers, Lecture Notes in Computer Science, 8499 (2014), 185-199.
doi: 10.1007/978-3-319-08219-6_13. |
[18] |
T. Phung-Duc,
Server farms with batch arrival and staggered setup, Proceedings of the Fifth Symposium on Information and Communication Technology, (2014), 240-247.
doi: 10.1145/2676585.2676613. |
[19] |
T. Phung-Duc, Exact solutions for M/M/$c$/Setup queues Telecommunication Systems 2016.
doi: 10.1007/s11235-016-0177-z. |
[20] |
T. Phung-Duc,
Multiserver queues with finite capacity and setup time, Lecture Notes in Computer Science, 9081 (2015), 173-187.
doi: 10.1007/978-3-319-18579-8_13. |
[21] |
T. Phung-Duc,
M/M/1/1 retrial queues with setup time, Advances in Intelligent Systems and Computing, 383 (2015), 93-104.
doi: 10.1007/978-3-319-22267-7_9. |
[22] |
C. Schwartz, R. Pries and P. Tran-Gia,
A queuing analysis of an energy-saving mechanism in data centers, Proceedings of IEEE 2012 International Conference on Information Networking (ICOIN), (2012), 70-75.
doi: 10.1109/ICOIN.2012.6164352. |
[23] |
H. Takagi,
Priority queues with setup times, Operations Research, 38 (1990), 667-677.
doi: 10.1287/opre.38.4.667. |
[24] |
H. Takagi and K. Sakamaki,
Symbolic moment calculation for the sojourn time in M/G/1 queues with Bernoulli feedback, Journal of the Operations Research Society of Japan, 42 (1999), 78-87.
doi: 10.1016/S0453-4514(99)80006-4. |
[25] |
H. Takagi and K. Sakamaki, Moments for M/G/1 queues, Mathematica Journal, 6 (1996), 75-80. Google Scholar |
[26] |
H. Takagi and S. Kudoh,
Symbolic higher-order moments of the waiting time in an M/G/1 queue with random order of service, Stochastic Models, (1997), 167-179.
doi: 10.1080/15326349708807419. |
show all references
References:
[1] |
J. R. Artalejo,
Analysis of an M/G/1 queue with constant repeated attempts and server vacations, Computers and Operations Research, 24 (1997), 493-504.
doi: 10.1016/S0305-0548(96)00076-7. |
[2] |
L. A. Barroso and U. Holzle,
The case for energy-proportional computing, Computer, 40 (2007), 33-37.
doi: 10.1109/MC.2007.443. |
[3] |
W. Bischof,
Analysis of M/G/1-queues with setup times and vacations under six different service disciplines, Queueing Systems, 39 (2001), 265-301.
doi: 10.1023/A:1013992708103. |
[4] |
S. Derkic and J. E. Stafford,
Symbolic computation of moments in priority queues, INFORMS Journal on Computing, 14 (2002), 261-277.
doi: 10.1287/ijoc.14.3.261.115. |
[5] |
S. Drekic, J. E. Stafford and G. E. Willmot,
Symbolic calculation of the moments of the time of ruin, Insurance: Mathematics and Economics, 34 (2004), 109-120.
doi: 10.1016/j.insmatheco.2003.11.004. |
[6] |
T. V. Do,
M/M/1 retrial queue with working vacations, Acta Informatica, 47 (2010), 67-75.
doi: 10.1007/s00236-009-0110-y. |
[7] |
G. I. Falin and J. G. C. Templeton, Retrial Queues Chapman and Hall, London, 1997. Google Scholar |
[8] |
A. Gandhi, M. Harchol-Balter and M. A. Kozuch,
Are sleep states effective in data centers?, Proceedings of IEEE 2012 International Green Computing Conference (IGCC), (2012), 1-10.
doi: 10.1109/IGCC.2012.6322260. |
[9] |
A. Gandhi, S. Doroudi, M. Harchol-Balter and A. Scheller-Wolf, Exact analysis of the M/M/k/setup class of Markov chains via recursive renewal reward, Proceedings of the ACM SIGMETRICS, (2013), 153-166. Google Scholar |
[10] |
A. Gandhi, S. Doroudi, M. Harchol-Balter and A. Scheller-Wolf,
Exact analysis of the M/M/k/setup class of Markov chains via recursive renewal reward, Queueing Systems, 77 (2014), 177-209.
doi: 10.1007/s11134-014-9409-7. |
[11] |
S. Kapodistria, T. Phung-Duc and J. Resing,
Linear birth/immigration-death process with binomial catastrophes, Probability in the Engineering and Informational Sciences, 30 (2016), 79-111.
doi: 10.1017/S0269964815000297. |
[12] |
V. J. Maccio and D. G. Down,
On optimal policies for energy-aware servers, Performance Evaluation, 90 (2013), 36-52.
doi: 10.1109/MASCOTS.2013.11. |
[13] |
I. Mitrani,
Managing performance and power consumption in a server farm, Annals of Operations Research, 202 (2013), 121-134.
doi: 10.1007/s10479-011-0932-1. |
[14] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi,
M/M/3/3 and M/M/4/4 retrial queues, Journal of Industrial and Management Optimization, 5 (2009), 431-451.
doi: 10.3934/jimo.2009.5.431. |
[15] |
T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi,
State-dependent M/M/c/c+ r retrial queues with Bernoulli abandonment, Journal of Industrial and Management Optimization, 6 (2010), 517-540.
doi: 10.3934/jimo.2010.6.517. |
[16] |
T. Phung-Duc,
An explicit solution for a tandem queue with retrials and losses, Operational Research, 12 (2012), 189-207.
doi: 10.1007/s12351-011-0113-7. |
[17] |
T. Phung-Duc,
Impatient customers in power-saving data centers, Lecture Notes in Computer Science, 8499 (2014), 185-199.
doi: 10.1007/978-3-319-08219-6_13. |
[18] |
T. Phung-Duc,
Server farms with batch arrival and staggered setup, Proceedings of the Fifth Symposium on Information and Communication Technology, (2014), 240-247.
doi: 10.1145/2676585.2676613. |
[19] |
T. Phung-Duc, Exact solutions for M/M/$c$/Setup queues Telecommunication Systems 2016.
doi: 10.1007/s11235-016-0177-z. |
[20] |
T. Phung-Duc,
Multiserver queues with finite capacity and setup time, Lecture Notes in Computer Science, 9081 (2015), 173-187.
doi: 10.1007/978-3-319-18579-8_13. |
[21] |
T. Phung-Duc,
M/M/1/1 retrial queues with setup time, Advances in Intelligent Systems and Computing, 383 (2015), 93-104.
doi: 10.1007/978-3-319-22267-7_9. |
[22] |
C. Schwartz, R. Pries and P. Tran-Gia,
A queuing analysis of an energy-saving mechanism in data centers, Proceedings of IEEE 2012 International Conference on Information Networking (ICOIN), (2012), 70-75.
doi: 10.1109/ICOIN.2012.6164352. |
[23] |
H. Takagi,
Priority queues with setup times, Operations Research, 38 (1990), 667-677.
doi: 10.1287/opre.38.4.667. |
[24] |
H. Takagi and K. Sakamaki,
Symbolic moment calculation for the sojourn time in M/G/1 queues with Bernoulli feedback, Journal of the Operations Research Society of Japan, 42 (1999), 78-87.
doi: 10.1016/S0453-4514(99)80006-4. |
[25] |
H. Takagi and K. Sakamaki, Moments for M/G/1 queues, Mathematica Journal, 6 (1996), 75-80. Google Scholar |
[26] |
H. Takagi and S. Kudoh,
Symbolic higher-order moments of the waiting time in an M/G/1 queue with random order of service, Stochastic Models, (1997), 167-179.
doi: 10.1080/15326349708807419. |
[1] |
Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 |
[2] |
Omer Gursoy, Kamal Adli Mehr, Nail Akar. Steady-state and first passage time distributions for waiting times in the $ MAP/M/s+G $ queueing model with generally distributed patience times. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021078 |
[3] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[4] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[5] |
Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907 |
[6] |
Maolin Cheng, Yun Liu, Jianuo Li, Bin Liu. Nonlinear Grey Bernoulli model NGBM (1, 1)'s parameter optimisation method and model application. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021054 |
[7] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379 |
[8] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[9] |
Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021046 |
[10] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
[11] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[12] |
Ravi Anand, Dibyendu Roy, Santanu Sarkar. Some results on lightweight stream ciphers Fountain v1 & Lizard. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020128 |
[13] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[14] |
Fei Liu, Xiaokai Liu, Fang Wang. On the mixing and Bernoulli properties for geodesic flows on rank 1 manifolds without focal points. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021057 |
[15] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (I): The sum of indices of equilibria is $ -1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021096 |
[16] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[17] |
Zhaoxia Wang, Hebai Chen. A nonsmooth van der Pol-Duffing oscillator (II): The sum of indices of equilibria is $ 1 $. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021101 |
[18] |
Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021037 |
[19] |
Beixiang Fang, Qin Zhao. Uniqueness of steady 1-D shock solutions in a finite nozzle via vanishing viscosity aguments. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021066 |
[20] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]