July  2017, 13(3): 1365-1381. doi: 10.3934/jimo.2016077

Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy

Budapest University of Technology and Economics, Department of Networked Systems and Services, MTA-BME Information systems research group, Magyar Tudósok Körútja 2,1117 Budapest, Hungary

* Corresponding author: Gábor Horváth

Received  September 2015 Revised  June 2016 Published  October 2016

Fund Project: The reviewing process of the paper was handled by Wuyi Yue and Yutaka Takahashi as Guest Editors.

The paper introduces a class of vacation queues where the arrival and service processes are modulated by the same Markov process, hence they can be dependent. The main result of the paper is the probability generating function for the number of jobs in the system. The analysis follows a matrix-analytic approach. A step of the analysis requires the evaluation of the busy period of a quasi birth death process with arbitrary initial level. This element can be useful in the analysis of other queueing models as well. We also discuss several special cases of the general model. We show that these special settings lead to simplification of the solution.

Citation: Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077
References:
[1]

A.-S. Alfa, A discrete MAP/PH/1 queue with vacations and exhaustive time-limited service, Oper. Res. Lett., 18 (1995), 31-40.  doi: 10.1016/0167-6377(95)00015-C.

[2]

A.-S. Alfa, Discrete time analysis of MAP/PH/1 vacation queue with gated time-limited service, Queueing Systems, 29 (1998), 35-54.  doi: 10.1023/A:1019123828374.

[3]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operation Research Letters, 33 (2005), 201-209.  doi: 10.1016/j.orl.2004.05.006.

[4]

S. Chang and T. Takine, Factorization and stochastic decomposition properties in bulk queues with generalized vacations, Queueing Systems, 50 (2005), 165-183.  doi: 10.1007/s11134-005-0510-9.

[5]

B. T. Doshi, Queueing systems with vacations -a survey, Queueing Systems, 1 (1986), 29-66.  doi: 10.1007/BF01149327.

[6]

N. S. C. Goswami, The discrete-time MAP/PH/1 queue with multiple working vacations, Applied Mathematical Modelling, 34 (2010), 931-946.  doi: 10.1016/j.apm.2009.07.021.

[7]

G. HorváthB. Van Houdt and M. Telek, Commuting matrices in the queue length and sojourn time analysis of MAP/MAP/1 queues, Stochastic Models, 30 (2014), 554-575.  doi: 10.1080/15326349.2014.930669.

[8]

J.-C. KeC.-H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: A short survey, International Journal of Operations Research, 7 (2010), 3-8. 

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling ASA-SIAM Series on Statistics and Applied Probability, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[10]

J. H. LiN. S. Tian and W. Liu, Discrete-time GI/Geom/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.

[11]

M. F. Neuts, A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.  doi: 10.1017/S0021900200033465.

[12]

Z. Saffer and M. Telek, Analysis of BMAP/G/1 vacation model of non-M/G/1-type, in EPEW, vol. 5261 of LNCS, Springer, Mallorca, Spain, 2008,212–226. doi: 10.1007/978-3-540-87412-6_16.

[13]

Z. Saffer and M. Telek, Closed form results for BMAP/G/1 vacation model with binomial type disciplines, Publ. Math. Debrecen, 76 (2010), 359-378. 

[14]

Z. Saffer and W. Yue, M/M/c multiple synchronous vacation model with gated discipline, Journal of Industrial and Management Optimization (JIMO), 8 (2012), 939-968.  doi: 10.3934/jimo.2012.8.939.

[15]

W. -H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs World Scientific, 1997. doi: 10.1142/3572.

[16]

H. Takagi, Queueing Analysis -A Foundation of Performance Evaluation, Vacation and Prority Systems, vol. 1 North-Holland, New York, 1991.

[17]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications vol. 93, Springer Science & Business Media, 2006.

[18]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.  doi: 10.1016/j.peva.2005.05.005.

show all references

References:
[1]

A.-S. Alfa, A discrete MAP/PH/1 queue with vacations and exhaustive time-limited service, Oper. Res. Lett., 18 (1995), 31-40.  doi: 10.1016/0167-6377(95)00015-C.

[2]

A.-S. Alfa, Discrete time analysis of MAP/PH/1 vacation queue with gated time-limited service, Queueing Systems, 29 (1998), 35-54.  doi: 10.1023/A:1019123828374.

[3]

Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operation Research Letters, 33 (2005), 201-209.  doi: 10.1016/j.orl.2004.05.006.

[4]

S. Chang and T. Takine, Factorization and stochastic decomposition properties in bulk queues with generalized vacations, Queueing Systems, 50 (2005), 165-183.  doi: 10.1007/s11134-005-0510-9.

[5]

B. T. Doshi, Queueing systems with vacations -a survey, Queueing Systems, 1 (1986), 29-66.  doi: 10.1007/BF01149327.

[6]

N. S. C. Goswami, The discrete-time MAP/PH/1 queue with multiple working vacations, Applied Mathematical Modelling, 34 (2010), 931-946.  doi: 10.1016/j.apm.2009.07.021.

[7]

G. HorváthB. Van Houdt and M. Telek, Commuting matrices in the queue length and sojourn time analysis of MAP/MAP/1 queues, Stochastic Models, 30 (2014), 554-575.  doi: 10.1080/15326349.2014.930669.

[8]

J.-C. KeC.-H. Wu and Z. G. Zhang, Recent developments in vacation queueing models: A short survey, International Journal of Operations Research, 7 (2010), 3-8. 

[9]

G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling ASA-SIAM Series on Statistics and Applied Probability, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 1999. doi: 10.1137/1.9780898719734.

[10]

J. H. LiN. S. Tian and W. Liu, Discrete-time GI/Geom/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.

[11]

M. F. Neuts, A versatile Markovian point process, Journal of Applied Probability, 16 (1979), 764-779.  doi: 10.1017/S0021900200033465.

[12]

Z. Saffer and M. Telek, Analysis of BMAP/G/1 vacation model of non-M/G/1-type, in EPEW, vol. 5261 of LNCS, Springer, Mallorca, Spain, 2008,212–226. doi: 10.1007/978-3-540-87412-6_16.

[13]

Z. Saffer and M. Telek, Closed form results for BMAP/G/1 vacation model with binomial type disciplines, Publ. Math. Debrecen, 76 (2010), 359-378. 

[14]

Z. Saffer and W. Yue, M/M/c multiple synchronous vacation model with gated discipline, Journal of Industrial and Management Optimization (JIMO), 8 (2012), 939-968.  doi: 10.3934/jimo.2012.8.939.

[15]

W. -H. Steeb, Matrix Calculus and Kronecker Product with Applications and C++ Programs World Scientific, 1997. doi: 10.1142/3572.

[16]

H. Takagi, Queueing Analysis -A Foundation of Performance Evaluation, Vacation and Prority Systems, vol. 1 North-Holland, New York, 1991.

[17]

N. Tian and Z. G. Zhang, Vacation Queueing Models: Theory and Applications vol. 93, Springer Science & Business Media, 2006.

[18]

D. Wu and H. Takagi, M/G/1 queue with multiple working vacations, Performance Evaluation, 63 (2006), 654-681.  doi: 10.1016/j.peva.2005.05.005.

Figure 1.  Subset relations of the considered special vacation queue models
Figure 2.  Cycles in the evolution of the queue
Figure 3.  The mean number of jobs in the system
Table 1.  Vector β as a function of the vacation distribution
Uniform Exponential Weibull
The general model (0.546, 0.109, 0.345) (0.543, 0.116, 0.341) (0.539, 0.142, 0.319)
The MAP/MAP/1
vacation queue
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
QBD vac. queue(0.546, 0.109, 0.345) (0.543, 0.115, 0.342)(0.53, 0.14, 0.33)
The indep. QBD
vacation queue
(0.21, 0.101, 0.09,
… 0.041, 0.373, 0.185)
(0.207, 0.104, 0.089,
… 0.042, 0.367, 0.191)
(0.197, 0.113, 0.086,
… 0.046, 0.348, 0.21)
Uniform Exponential Weibull
The general model (0.546, 0.109, 0.345) (0.543, 0.116, 0.341) (0.539, 0.142, 0.319)
The MAP/MAP/1
vacation queue
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
(0.214, 0.097, 0.091,
… 0.04, 0.382, 0.176)
QBD vac. queue(0.546, 0.109, 0.345) (0.543, 0.115, 0.342)(0.53, 0.14, 0.33)
The indep. QBD
vacation queue
(0.21, 0.101, 0.09,
… 0.041, 0.373, 0.185)
(0.207, 0.104, 0.089,
… 0.042, 0.367, 0.191)
(0.197, 0.113, 0.086,
… 0.046, 0.348, 0.21)
[1]

Sourav Pradhan, Prasenjit Karan. Performance analysis of an infinite-buffer batch-size-dependent bulk service queue with server breakdown and multiple vacation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022143

[2]

Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial and Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911

[3]

Achyutha Krishnamoorthy, Anu Nuthan Joshua. A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2925-2941. doi: 10.3934/jimo.2020101

[4]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[5]

Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067

[6]

Pikkala Vijaya Laxmi, Singuluri Indira, Kanithi Jyothsna. Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1199-1214. doi: 10.3934/jimo.2016.12.1199

[7]

Zsolt Saffer, Miklós Telek. Analysis of BMAP vacation queue and its application to IEEE 802.16e sleep mode. Journal of Industrial and Management Optimization, 2010, 6 (3) : 661-690. doi: 10.3934/jimo.2010.6.661

[8]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[9]

Qionglin Liu, Yinghui Tang, Miaomiao Yu, Wenqing Wu. Analysis of $ {{M}^{({{\lambda }_{1}}, {{\lambda }_{2}})}}/G/1 $ queue with uninterrupted single vacation and server's workload controlled D-policy. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022140

[10]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[11]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[12]

Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial and Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57

[13]

A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2843-2856. doi: 10.3934/jimo.2019083

[14]

Gopinath Panda, Veena Goswami, Abhijit Datta Banik, Dibyajyoti Guha. Equilibrium balking strategies in renewal input queue with Bernoulli-schedule controlled vacation and vacation interruption. Journal of Industrial and Management Optimization, 2016, 12 (3) : 851-878. doi: 10.3934/jimo.2016.12.851

[15]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial and Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[16]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial and Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[17]

Jeongsim Kim, Bara Kim. Stability of a queue with discriminatory random order service discipline and heterogeneous servers. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1237-1254. doi: 10.3934/jimo.2016070

[18]

Ke Sun, Jinting Wang, Zhe George Zhang. Strategic joining in a single-server retrial queue with batch service. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3309-3332. doi: 10.3934/jimo.2020120

[19]

Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2813-2842. doi: 10.3934/jimo.2019082

[20]

Jiangshan Wang, Lingxiong Meng, Hongen Jia. Numerical analysis of modular grad-div stability methods for the time-dependent Navier-Stokes/Darcy model. Electronic Research Archive, 2020, 28 (3) : 1191-1205. doi: 10.3934/era.2020065

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (203)
  • HTML views (396)
  • Cited by (1)

Other articles
by authors

[Back to Top]