# American Institute of Mathematical Sciences

• Previous Article
Pricing credit derivatives under a correlated regime-switching hazard processes model
• JIMO Home
• This Issue
• Next Article
Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy
July  2017, 13(3): 1383-1394. doi: 10.3934/jimo.2016078

## Inertial accelerated algorithms for solving a split feasibility problem

 1 School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China 2 Department of Mathematics and Statistics, Curtin University, Perth, WA 6102, Australia

* Corresponding author:Yazheng Dang. The reviewing process of the paper was handled by Changzhi Wu as a Guest Editor

Received  February 2015 Published  October 2016

Inspired by the inertial proximal algorithms for finding a zero of a maximal monotone operator, in this paper, we propose two inertial accelerated algorithms to solve the split feasibility problem. One is an inertial relaxed-CQ algorithm constructed by applying inertial technique to a relaxed-CQ algorithm, the other is a modified inertial relaxed-CQ algorithm which combines the KM method with the inertial relaxed-CQ algorithm. We prove their asymptotical convergence under some suitable conditions. Numerical results are reported to show the effectiveness of the proposed algorithms.

Citation: Yazheng Dang, Jie Sun, Honglei Xu. Inertial accelerated algorithms for solving a split feasibility problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1383-1394. doi: 10.3934/jimo.2016078
##### References:

show all references

##### References:
The numerical results of example 5.1
 Initiative point R-Iter Iner-R-Iter $x^{0}=(3.2, 4.2, 5.2)$ $k=74; s =0.068$ $k=5; s=0.016$ $x^{1}=(-0.5843,$ $x^{\ast}=(-0.6200, 1.6180, 1.6216)$ $x^{\ast}=(-1.1281, 1.0720, 1.9694)$ $2.3078, 3.3435)$ $x^{0}=(10, 0, 10)$ $k=93; s =0.090$ $k=84; s=0.085$ $x^{1}=(2.0825,$ $x^{\ast}=(0.9000, -1.7152, 1.7074)$ $x^{\ast}=(-0.1061, -1.4514, 2.1596)$ $-2.5275, 6.4589)$ $x^{0}=(2, -5, 2)$ $k=73; s =0.075$ $k=35; s =0.035$ $x^{1}=(1.3327,$ $x^{\ast}=(1.1512, -2.7679;1.8616)$ $x^{\ast}=(0.9010, -2.1029, 1.8169)$ $-3.2657, 1.9328)$
 Initiative point R-Iter Iner-R-Iter $x^{0}=(3.2, 4.2, 5.2)$ $k=74; s =0.068$ $k=5; s=0.016$ $x^{1}=(-0.5843,$ $x^{\ast}=(-0.6200, 1.6180, 1.6216)$ $x^{\ast}=(-1.1281, 1.0720, 1.9694)$ $2.3078, 3.3435)$ $x^{0}=(10, 0, 10)$ $k=93; s =0.090$ $k=84; s=0.085$ $x^{1}=(2.0825,$ $x^{\ast}=(0.9000, -1.7152, 1.7074)$ $x^{\ast}=(-0.1061, -1.4514, 2.1596)$ $-2.5275, 6.4589)$ $x^{0}=(2, -5, 2)$ $k=73; s =0.075$ $k=35; s =0.035$ $x^{1}=(1.3327,$ $x^{\ast}=(1.1512, -2.7679;1.8616)$ $x^{\ast}=(0.9010, -2.1029, 1.8169)$ $-3.2657, 1.9328)$
The numerical results of example 5.1
 Initiative point $\alpha_{k}$ Iner-KM-R-Iter $x^{0}=(3.2, 4.2, 5.2)$ 0.4 $k=3; s=0.016$ $x^{1}=(-0.5843, 2.3078, 3.3435)$ $x^{\ast}=(-2.6931, 1.2534, 2.2937)$ 0.8 $k=3; s= 0.013$ $x^{\ast}=(-2.6828, 1.2585, 2.2835)$ $x^{0}=(10, 0, 10)$ 0.4 $k=76; s =0.086$ $x^{1}=(2.0825, -2.5275, 6.4589)$ $x^{\ast}=(-0.1346, -2.6392, 2.3046)$ 0.8 $k= 74; s=0.085$ $x^{\ast}=(-0.0799, -2.6190, 2.3611)$ $x^{0}=(2, -5, 2)$ 0.6 $k=62; s =0.056$ $x^{1}=(1.3327, -3.2657, 1.9328)$ $x^{\ast}=(0.9006, -2.1031, 1.8171)$ 0.8 $k=45; s= 0.046$ $x^{\ast}=(0.9008, -2.1030, 1.8170)$
 Initiative point $\alpha_{k}$ Iner-KM-R-Iter $x^{0}=(3.2, 4.2, 5.2)$ 0.4 $k=3; s=0.016$ $x^{1}=(-0.5843, 2.3078, 3.3435)$ $x^{\ast}=(-2.6931, 1.2534, 2.2937)$ 0.8 $k=3; s= 0.013$ $x^{\ast}=(-2.6828, 1.2585, 2.2835)$ $x^{0}=(10, 0, 10)$ 0.4 $k=76; s =0.086$ $x^{1}=(2.0825, -2.5275, 6.4589)$ $x^{\ast}=(-0.1346, -2.6392, 2.3046)$ 0.8 $k= 74; s=0.085$ $x^{\ast}=(-0.0799, -2.6190, 2.3611)$ $x^{0}=(2, -5, 2)$ 0.6 $k=62; s =0.056$ $x^{1}=(1.3327, -3.2657, 1.9328)$ $x^{\ast}=(0.9006, -2.1031, 1.8171)$ 0.8 $k=45; s= 0.046$ $x^{\ast}=(0.9008, -2.1030, 1.8170)$
The numerical results of example 5.2
 Initiative point R-Iter Iner-R-Iter $x^{0}=(0, 0, 0, 0, 0)$ $k=15$; s $=0.675$ $k=5$; s $=0.018$ $x^{1}=(-0.0092, 0,$ $x^{\ast}=(-0.0208, 0,$ $x^{\ast}=(0.0015, 0,$ $-0.0132, -0.0026, -0.0092)$ $-0.0297, -0.0059, -0.0208)$ $-0.0412, -0.0082, -0.0288)$ $x^{0}=(1, 1, 1, 1, 1)$ $k=20$; s $=0.083$ $k=3$; s $=0.0272$ $x^{1}=(0.3237, 0.5471,$ $x^{\ast}=(0.0171, 0.3822,$ $x^{\ast}=(-0.0784, 0.2935,$ $0.2280, 0.4833, 0.3237)$ $-0.1394, 0.2779, 0.0171)$ $-0.2378, 0.1873, -0.0784)$ $x^{0}=(20, 10, 20, 10, 20)$ $k=22$; s $=0.090$ $k=6$; s $=0.067$ $x^{1}=(6.1605, 5.0023,$ $x^{\ast}=(0.0837, 0.3910,$ $x^{\ast}=(-0.2490, -0.2117,$ $4.5130, 3.9040, 6.1605)$ $-0.2155, 0.1915, 0.0837)$ $-0.1742, -0.1619, -0.2490)$
 Initiative point R-Iter Iner-R-Iter $x^{0}=(0, 0, 0, 0, 0)$ $k=15$; s $=0.675$ $k=5$; s $=0.018$ $x^{1}=(-0.0092, 0,$ $x^{\ast}=(-0.0208, 0,$ $x^{\ast}=(0.0015, 0,$ $-0.0132, -0.0026, -0.0092)$ $-0.0297, -0.0059, -0.0208)$ $-0.0412, -0.0082, -0.0288)$ $x^{0}=(1, 1, 1, 1, 1)$ $k=20$; s $=0.083$ $k=3$; s $=0.0272$ $x^{1}=(0.3237, 0.5471,$ $x^{\ast}=(0.0171, 0.3822,$ $x^{\ast}=(-0.0784, 0.2935,$ $0.2280, 0.4833, 0.3237)$ $-0.1394, 0.2779, 0.0171)$ $-0.2378, 0.1873, -0.0784)$ $x^{0}=(20, 10, 20, 10, 20)$ $k=22$; s $=0.090$ $k=6$; s $=0.067$ $x^{1}=(6.1605, 5.0023,$ $x^{\ast}=(0.0837, 0.3910,$ $x^{\ast}=(-0.2490, -0.2117,$ $4.5130, 3.9040, 6.1605)$ $-0.2155, 0.1915, 0.0837)$ $-0.1742, -0.1619, -0.2490)$
The numerical results of example 5.2
 Initiative point $\alpha_{k}$ Iner-KM-R-Iter $x^{0}=(0, 0, 0, 0, 0)$ 0.6 $k=6$; s $=0.020$ $x^{1}=(-0.0092, 0, -0.0132,$ $x^{\ast}=(-0.0209, 0, -0.0299, -0.0059, -0.0209)$ $-0.0026, -0.0092)$ 0.8 k=5; s=0.018 $x^{\ast}=(-0.0212, 0, -0.0304, -0.0060, -0.0212)$ $x^{0}=(1, 1, 1, 1, 1)$ 0.4 $k=3$; s $=0.034$ $x^{1}=(0.3237, 0.5471,$ $x^{\ast}=(-0.0644, 0.2935, -0.2177, 0.1913, -0.0644)$ $0.2280, 0.4833, 0.3237)$ 0.6 k=3; s=0.034 $x^{\ast}=(-0.0691, 0.2935, -0.2244, 0.1899, -0.0691)$ $x^{0}=(20, 10, 20, 10, 20)$ 0.6 $k=9$; s $=0.072$ $x^{1}=(6.1605, 5.0023,$ $x^{\ast}=(-0.2263, -0.1045, -0.2337, -0.1094, -0.2263)$ $4.5130, 3.9040, 6.1605)$ 0.8 k= 7; s=0.071 $x^{\ast}=(-0.2283, -0.1610, -0.1881, -0.1342, -0.2283)$
 Initiative point $\alpha_{k}$ Iner-KM-R-Iter $x^{0}=(0, 0, 0, 0, 0)$ 0.6 $k=6$; s $=0.020$ $x^{1}=(-0.0092, 0, -0.0132,$ $x^{\ast}=(-0.0209, 0, -0.0299, -0.0059, -0.0209)$ $-0.0026, -0.0092)$ 0.8 k=5; s=0.018 $x^{\ast}=(-0.0212, 0, -0.0304, -0.0060, -0.0212)$ $x^{0}=(1, 1, 1, 1, 1)$ 0.4 $k=3$; s $=0.034$ $x^{1}=(0.3237, 0.5471,$ $x^{\ast}=(-0.0644, 0.2935, -0.2177, 0.1913, -0.0644)$ $0.2280, 0.4833, 0.3237)$ 0.6 k=3; s=0.034 $x^{\ast}=(-0.0691, 0.2935, -0.2244, 0.1899, -0.0691)$ $x^{0}=(20, 10, 20, 10, 20)$ 0.6 $k=9$; s $=0.072$ $x^{1}=(6.1605, 5.0023,$ $x^{\ast}=(-0.2263, -0.1045, -0.2337, -0.1094, -0.2263)$ $4.5130, 3.9040, 6.1605)$ 0.8 k= 7; s=0.071 $x^{\ast}=(-0.2283, -0.1610, -0.1881, -0.1342, -0.2283)$
The numerical results of example 5.3
 $M, N$ R-Iter Iner-R-Iter Iner-KM-R-Iter $M=20, N=10$ $k=436, s =0.970$ $k=174, s =0.500$ $k=210, s =0.270$ $M=100, N=90$ $k=3788, s =0.130$ $k=602, s =0.680$ $k=534, s =0.690$
 $M, N$ R-Iter Iner-R-Iter Iner-KM-R-Iter $M=20, N=10$ $k=436, s =0.970$ $k=174, s =0.500$ $k=210, s =0.270$ $M=100, N=90$ $k=3788, s =0.130$ $k=602, s =0.680$ $k=534, s =0.690$
 [1] Guash Haile Taddele, Poom Kumam, Habib ur Rehman, Anteneh Getachew Gebrie. Self adaptive inertial relaxed $CQ$ algorithms for solving split feasibility problem with multiple output sets. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021172 [2] Suthep Suantai, Nattawut Pholasa, Prasit Cholamjiak. The modified inertial relaxed CQ algorithm for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1595-1615. doi: 10.3934/jimo.2018023 [3] Ai-Ling Yan, Gao-Yang Wang, Naihua Xiu. Robust solutions of split feasibility problem with uncertain linear operator. Journal of Industrial & Management Optimization, 2007, 3 (4) : 749-761. doi: 10.3934/jimo.2007.3.749 [4] Zeng-Zhen Tan, Rong Hu, Ming Zhu, Ya-Ping Fang. A dynamical system method for solving the split convex feasibility problem. Journal of Industrial & Management Optimization, 2021, 17 (6) : 2989-3011. doi: 10.3934/jimo.2020104 [5] Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023 [6] Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017 [7] Yan Tang. Convergence analysis of a new iterative algorithm for solving split variational inclusion problems. Journal of Industrial & Management Optimization, 2020, 16 (2) : 945-964. doi: 10.3934/jimo.2018187 [8] Ya-zheng Dang, Jie Sun, Su Zhang. Double projection algorithms for solving the split feasibility problems. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2023-2034. doi: 10.3934/jimo.2018135 [9] Xueling Zhou, Meixia Li, Haitao Che. Relaxed successive projection algorithm with strong convergence for the multiple-sets split equality problem. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2557-2572. doi: 10.3934/jimo.2020082 [10] Sanming Liu, Zhijie Wang, Chongyang Liu. On convergence analysis of dual proximal-gradient methods with approximate gradient for a class of nonsmooth convex minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 389-402. doi: 10.3934/jimo.2016.12.389 [11] Preeyanuch Chuasuk, Ferdinard Ogbuisi, Yekini Shehu, Prasit Cholamjiak. New inertial method for generalized split variational inclusion problems. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3357-3371. doi: 10.3934/jimo.2020123 [12] Chibueze Christian Okeke, Abdulmalik Usman Bello, Lateef Olakunle Jolaoso, Kingsley Chimuanya Ukandu. Inertial method for split null point problems with pseudomonotone variational inequality problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021037 [13] Vladimir F. Demyanov, Julia A. Ryabova. Exhausters, coexhausters and converters in nonsmooth analysis. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1273-1292. doi: 10.3934/dcds.2011.31.1273 [14] Aviv Gibali, Dang Thi Mai, Nguyen The Vinh. A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications. Journal of Industrial & Management Optimization, 2019, 15 (2) : 963-984. doi: 10.3934/jimo.2018080 [15] Timilehin Opeyemi Alakoya, Lateef Olakunle Jolaoso, Oluwatosin Temitope Mewomo. A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020152 [16] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [17] Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485 [18] David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143 [19] Jamilu Abubakar, Poom Kumam, Abor Isa Garba, Muhammad Sirajo Abdullahi, Abdulkarim Hassan Ibrahim, Wachirapong Jirakitpuwapat. An efficient iterative method for solving split variational inclusion problem with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021160 [20] Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 695-717. doi: 10.3934/dcdsb.2018203

2020 Impact Factor: 1.801