July  2017, 13(3): 1395-1415. doi: 10.3934/jimo.2016079

Pricing credit derivatives under a correlated regime-switching hazard processes model

1. 

Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China

2. 

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China

3. 

Center for Financial Engineering and Department of Mathematics, Soochow University, Suzhou 215006, China

* Corresponding author:Yinghui Dong

Received  February 2016 Published  October 2016

Fund Project: The authors thank the anonymous referees for valuable comments to improve the earlier version of the paper. The first author is supported by the NSF of Jiangsu Province (Grant No. BK20130260), the NNSF of China (Grant No. 11301369) and Qing Lan Project. The second author is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. HKU 7057/13P), and the CAE 2013 research grant from the Society of Actuaries -any opinions, finding, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SOA. The third author is supported by the NNSF of China (Grant No. 11371274).

In this paper, we study the valuation of a single-name credit default swap and a $k$th-to-default basket swap under a correlated regime-switching hazard processes model. We assume that the defaults of all the names are driven by a Markov chain describing the macro-economic conditions and some shock events modelled by a multivariate regime-switching shot noise process. Based on some expressions for the joint Laplace transform of the regime-switching shot noise processes, we give explicit formulas for the spread of a CDS contract and the $k$th-to-default basket swap.

Citation: Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079
References:
[1]

C. Alexander and A. Kaeck, Regime dependent determinants of credit default swap spreads, J. Bank. Finan., 32 (2008), 1008-1021.   Google Scholar

[2]

T. Bielecki, S. Crépey, M. Jeanblanc and B. Zargari, Valuation and hedging of CDS counterparty exposure in a Markov copula model, Int. J. Theor. Appl. Finance, 15 (2012), 1250004, 39 pp. doi: 10.1142/S0219024911006498.  Google Scholar

[3]

D. BrigoA. Pallavicini and R. Torresetti, Credit models and the crisis: Default cluster dynamics and the generalized Poisson loss model, J. Credit Risk, 6 (2010), 39-81.   Google Scholar

[4]

J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[5]

A. Dassios and J. Jang, Pricing of catastrophe reinsurance & derivatives using the Cox process with shot noise intensity, Financ. Stoch, 7 (2003), 73-95.  doi: 10.1007/s007800200079.  Google Scholar

[6]

M. Davis and V. Lo, Infectious defaults, Quant. Finance, 1 (2001), 382-387.   Google Scholar

[7]

A. Davies, Credit spread modeling with regime-switching techniques, J. Fixed Income, 14 (2004), 36-48.  doi: 10.3905/jfi.2004.461450.  Google Scholar

[8]

G. Di Graziano and L. C. G. Rogers, A dynamic approach to the modelling of correlation credit derivatives using Markov chains, Int. J. Theor. Appl. Finance, 12 (2009), 45-62.  doi: 10.1142/S0219024909005142.  Google Scholar

[9]

X. W. DingK. Giesecke and P. I. Tomecek, Time-changed birth processes and multiname credit derivatives, Oper. Res., 57 (2009), 990-1005.  doi: 10.1287/opre.1080.0652.  Google Scholar

[10]

Y. H. DongK. C. Yuen and C. F. Wu, Unilateral counterparty risk valuation of CDS using a regime-switching intensity model, Stat. Probabil. Lett., 85 (2014), 25-35.  doi: 10.1016/j.spl.2013.11.001.  Google Scholar

[11]

Y. H. DongK. C. YuenG. J. Wang and C. F. Wu. A reduced-form model for correlated defaults with regime-switching shot noise intensities, A reduced-form model for correlated defaults with regime-switching shot noise intensities, Methodol. Comput. Appl. Probab., 18 (2016), 459-486.  doi: 10.1007/s11009-014-9431-6.  Google Scholar

[12]

D. Duffie and N. Gârleanu, Risk and valuation of collateralized debt obligations, Financ. Anal. J., 57 (2001), 41-59.  doi: 10.2469/faj.v57.n1.2418.  Google Scholar

[13]

D. DuffieD. Filipovic and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[14]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag: Berlin-Heidelberg-New York, 1995.  Google Scholar

[15]

R. J. Elliott and T. K. Siu, Default times in a continuous-time Markovian regime switching model, Stoch. Anal. Appl., 29 (2011), 824-837.  doi: 10.1080/07362994.2011.598792.  Google Scholar

[16]

R. M. Gaspar and T. Schmidt, Credit risk modeling with shot-noise processes, working paper, 2010. Available from: http://ssrn.com/abstract=1588750. Google Scholar

[17]

K. Giesecke, A simple exponential model for dependent defaults, J. Fixed Income, 13 (2003), 74-83.  doi: 10.2139/ssrn.315088.  Google Scholar

[18]

K. GieseckeF. A. LongstaffS. Schaefer and I. Ilya Strebulaev, Corporate bond default risk: A 150-year perspective, J. Financ. Econ., 102 (2011), 233-250.  doi: 10.1016/j.jfineco.2011.01.011.  Google Scholar

[19]

K. Giesecke and L. Goldberg, Sequential defaults and incomplete information, J. Risk, 7 (2004), 1-26.  doi: 10.21314/JOR.2004.100.  Google Scholar

[20]

J. Hull and A. White, Valuation of a CDO and a nth to default CDS without Monte Carlo simulation, J. Derivatives, 12 (2004), 8-23.   Google Scholar

[21]

R. Jarrow and F. Yu, Counterparty risk and the pricing of defaultable securities, J. Finan, 56 (2001), 1765-1799.   Google Scholar

[22]

P. Schonbucher and D. Schubert, Copula dependent default risk in intensity models, Working Paper. Department of Statistics, Bonn University, 2001, Available from: http://ssrn.com/abstract=301968. Google Scholar

[23]

Y. Shen and T. K. Siu, Longevity bond Pricing under stochastic interest rate and mortality with regime switching, Insur. Math. Econ., 52 (2013), 114-123.  doi: 10.1016/j.insmatheco.2012.11.006.  Google Scholar

show all references

References:
[1]

C. Alexander and A. Kaeck, Regime dependent determinants of credit default swap spreads, J. Bank. Finan., 32 (2008), 1008-1021.   Google Scholar

[2]

T. Bielecki, S. Crépey, M. Jeanblanc and B. Zargari, Valuation and hedging of CDS counterparty exposure in a Markov copula model, Int. J. Theor. Appl. Finance, 15 (2012), 1250004, 39 pp. doi: 10.1142/S0219024911006498.  Google Scholar

[3]

D. BrigoA. Pallavicini and R. Torresetti, Credit models and the crisis: Default cluster dynamics and the generalized Poisson loss model, J. Credit Risk, 6 (2010), 39-81.   Google Scholar

[4]

J. Buffington and R. J. Elliott, American options with regime switching, Int. J. Theor. Appl. Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[5]

A. Dassios and J. Jang, Pricing of catastrophe reinsurance & derivatives using the Cox process with shot noise intensity, Financ. Stoch, 7 (2003), 73-95.  doi: 10.1007/s007800200079.  Google Scholar

[6]

M. Davis and V. Lo, Infectious defaults, Quant. Finance, 1 (2001), 382-387.   Google Scholar

[7]

A. Davies, Credit spread modeling with regime-switching techniques, J. Fixed Income, 14 (2004), 36-48.  doi: 10.3905/jfi.2004.461450.  Google Scholar

[8]

G. Di Graziano and L. C. G. Rogers, A dynamic approach to the modelling of correlation credit derivatives using Markov chains, Int. J. Theor. Appl. Finance, 12 (2009), 45-62.  doi: 10.1142/S0219024909005142.  Google Scholar

[9]

X. W. DingK. Giesecke and P. I. Tomecek, Time-changed birth processes and multiname credit derivatives, Oper. Res., 57 (2009), 990-1005.  doi: 10.1287/opre.1080.0652.  Google Scholar

[10]

Y. H. DongK. C. Yuen and C. F. Wu, Unilateral counterparty risk valuation of CDS using a regime-switching intensity model, Stat. Probabil. Lett., 85 (2014), 25-35.  doi: 10.1016/j.spl.2013.11.001.  Google Scholar

[11]

Y. H. DongK. C. YuenG. J. Wang and C. F. Wu. A reduced-form model for correlated defaults with regime-switching shot noise intensities, A reduced-form model for correlated defaults with regime-switching shot noise intensities, Methodol. Comput. Appl. Probab., 18 (2016), 459-486.  doi: 10.1007/s11009-014-9431-6.  Google Scholar

[12]

D. Duffie and N. Gârleanu, Risk and valuation of collateralized debt obligations, Financ. Anal. J., 57 (2001), 41-59.  doi: 10.2469/faj.v57.n1.2418.  Google Scholar

[13]

D. DuffieD. Filipovic and W. Schachermayer, Affine processes and applications in finance, Ann. Appl. Probab., 13 (2003), 984-1053.  doi: 10.1214/aoap/1060202833.  Google Scholar

[14]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag: Berlin-Heidelberg-New York, 1995.  Google Scholar

[15]

R. J. Elliott and T. K. Siu, Default times in a continuous-time Markovian regime switching model, Stoch. Anal. Appl., 29 (2011), 824-837.  doi: 10.1080/07362994.2011.598792.  Google Scholar

[16]

R. M. Gaspar and T. Schmidt, Credit risk modeling with shot-noise processes, working paper, 2010. Available from: http://ssrn.com/abstract=1588750. Google Scholar

[17]

K. Giesecke, A simple exponential model for dependent defaults, J. Fixed Income, 13 (2003), 74-83.  doi: 10.2139/ssrn.315088.  Google Scholar

[18]

K. GieseckeF. A. LongstaffS. Schaefer and I. Ilya Strebulaev, Corporate bond default risk: A 150-year perspective, J. Financ. Econ., 102 (2011), 233-250.  doi: 10.1016/j.jfineco.2011.01.011.  Google Scholar

[19]

K. Giesecke and L. Goldberg, Sequential defaults and incomplete information, J. Risk, 7 (2004), 1-26.  doi: 10.21314/JOR.2004.100.  Google Scholar

[20]

J. Hull and A. White, Valuation of a CDO and a nth to default CDS without Monte Carlo simulation, J. Derivatives, 12 (2004), 8-23.   Google Scholar

[21]

R. Jarrow and F. Yu, Counterparty risk and the pricing of defaultable securities, J. Finan, 56 (2001), 1765-1799.   Google Scholar

[22]

P. Schonbucher and D. Schubert, Copula dependent default risk in intensity models, Working Paper. Department of Statistics, Bonn University, 2001, Available from: http://ssrn.com/abstract=301968. Google Scholar

[23]

Y. Shen and T. K. Siu, Longevity bond Pricing under stochastic interest rate and mortality with regime switching, Insur. Math. Econ., 52 (2013), 114-123.  doi: 10.1016/j.insmatheco.2012.11.006.  Google Scholar

Figure 1.  Term structure of $s_1$ with $a=1$
Figure 2.  Impact of $w$ on $s_1$ with $a=1, T=10.$
Figure 3.  Impact of $a$ on $s_1$ with $w=0.01, T=10.$
Figure 4.  Term structure of $s^1$ with $a=1$
Figure 5.  Impact of $w$ on $s^1$ and with $q=0.5, T=10.$
Figure 6.  Impact of $a$ on $s^1$ and with $q=0.5, T=10.$
[1]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[2]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[3]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[4]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[5]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[6]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[7]

Sumon Sarkar, Bibhas C. Giri. Optimal lot-sizing policy for a failure prone production system with investment in process quality improvement and lead time variance reduction. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021048

[8]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[9]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[10]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[11]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[12]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[13]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[14]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[15]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[16]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[17]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[18]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[19]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[20]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (52)
  • HTML views (424)
  • Cited by (3)

Other articles
by authors

[Back to Top]