[1]
|
A. Atighehchian, M. Bijari and H. Tarkesh, A novel hybrid algorithm for scheduling steelmaking continuous casting production, Computers and Operations Research, 36 (2009), 2450-2461.
|
[2]
|
H. Aytug, M. Lawley, K. McKay, S. Mohan and R. Uzsoy, Executing production schedules in the face of uncertainties: A review and some future directions, European Journal of Operational Research, 161 (2005), 86-110.
doi: 10.1016/j.ejor.2003.08.027.
|
[3]
|
A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning, International Journal of Production Economics, 104 (2006), 260-270.
doi: 10.1016/j.ijpe.2004.10.016.
|
[4]
|
D. Bertsekas,
Nonlinear Programming, 2$^{nd}$ edition, Athena Scientific, Massachusetts, 1999.
doi: 10.1007/978-1-4612-0873-0.
|
[5]
|
U. Brannlund,
On Relaxation Methods for Nonsmooth Convex Optimization, Ph. D thesis, Royal Institute of Technology in Stockholm, 1993.
|
[6]
|
P. Camerini, L. Fratta and F. Maffioli, On improving relaxation methods by modified gradient techniques, Mathematical Programming Study, 3 (1975), 26-34.
|
[7]
|
H. Chen and P. Luh, An alternative framework to Lagrangian relaxation approach for job shop scheduling, European Journal of Operational Research, 149 (2003), 499-512.
doi: 10.1016/S0377-2217(02)00470-8.
|
[8]
|
P. Cowling, D. Ouelhadj and S. Petrovic, Dynamic scheduling of steel casting and milling using multi-agents, Production Planning and Control, 15 (2004), 178-188.
doi: 10.1080/09537280410001662466.
|
[9]
|
V. Demjanov and V. Somesova, Conditional subdifferentials of convex functions, Soviet Mathematics Doklady, 19 (1978), 1181-1185.
|
[10]
|
J. Goffin and K. Kiwiel, Convergence of a simple subgradient level method, Mathematical Programming, 85 (1999), 207-211.
doi: 10.1007/s101070050053.
|
[11]
|
B. Guta,
Subgradient Optimization Methods in Integer Programming with an Application to a Radiation Therapy Problem, Ph. D thesis, Teknishe Universitat Kaiserlautern in Kaiserlauter, 2003.
|
[12]
|
I. Harjunkoski and I. Grossmann, A decomposition approach for the scheduling of a steel plant production, Computers and Chemical Engineering, 25 (2001), 1647-1660.
doi: 10.1016/S0098-1354(01)00729-3.
|
[13]
|
T. Larsson, M. Patriksson and A. Stromberg, Conditional subgradient optimization --theory and applications, European Journal of Operational Research, 88 (1996), 382-403.
doi: 10.1016/0377-2217(94)00200-2.
|
[14]
|
J. Li, X. Xiao, Q. Tang and C. Floudas, Production scheduling of a Large-scale steelmaking continuous casting process via unit-specific event-based continuous-time models: Short-term and medium-term scheduling, Industrial and Engineering Chemistry Research, 51 (2012), 7300-7319.
doi: 10.1021/ie2015944.
|
[15]
|
P. Luh and D. Hoitomt, Scheduling of manufacturing systems using the Lagrangian relaxation technique, IEEE Transactions on Automatic Control, 38 (1993), 1066-1079.
doi: 10.1109/9.231461.
|
[16]
|
P. Luh, D. Hoitomt, E. Max and K. Pattipati, Scheduling generation and reconfiguration for parallel machines, IEEE Transactions on Robotics and Automation, 6 (1990), 687-696.
|
[17]
|
K. Mao, Q. Pan, X. Pang and T. Chai, A novel Lagrangian relaxation approach for the hybrid flowshop scheduling problem in a steelmaking-continuous casting process, European Journal of Operational Research, 236 (2014), 51-60.
doi: 10.1016/j.ejor.2013.11.010.
|
[18]
|
K. Mao, Q. Pan, X. Pang and T. Chai, An effective Lagrangian relaxation approach for rescheduling a steelmaking-continuous casting process, Control Engineering Practice, 30 (2014), 67-77.
doi: 10.1016/j.conengprac.2014.06.003.
|
[19]
|
K. Mao, Q. Pan, X. Pang, T. Chai and P. Luh, An Effective Subgradient Method for Scheduling a Steelmaking-Continuous Casting Process, IEEE Transactions on Automation Science and Engineering, 12 (2014), 1-13.
doi: 10.1109/TASE.2014.2332511.
|
[20]
|
H. Missbauer, W. Hauber and W. Werner Stadler, A scheduling system for the steelmaking-continuous casting process: A case study from the steelmaking industry, International Journal of Production Research, 47 (2009), 4147-4172.
doi: 10.1080/00207540801950136.
|
[21]
|
A. Nedic and D. Bertsekas, Incremental Subgradient Methods for Nondifferentiable Optimization, SIAM Journal on Optimization, 12 (2001), 109-138.
doi: 10.1137/S1052623499362111.
|
[22]
|
T. Nishi, Y. Hiranaka and M. Inuiguchi, Lagrangian relaxation with cut generation for hybrid flowshop scheduling problems to minimize the total weighted tardiness, Computers and Operations Research, 37 (2010), 189-198.
doi: 10.1016/j.cor.2009.04.008.
|
[23]
|
T. Nishi, Y. Isoya Y and M. Inuiguchi, An integrated column generation and lagrangian relaxation for flowshop scheduling problems, Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, (2009), 209-304.
doi: 10.1109/ICSMC.2009.5346159.
|
[24]
|
D. Ouelhadj, P. Cowling and S. Petrovic, Utility and stability measures for agent-based dynamic scheduling of steel continuous casting, Journal of Scheduling, 12 (2009), 417-431.
doi: 10.1109/ROBOT.2003.1241592.
|
[25]
|
D. Ouelhadj and S. Petrovic, A survey of dynamic scheduling in manufacturing systems, Journal of Scheduling, 12 (2009), 417-431.
doi: 10.1007/s10951-008-0090-8.
|
[26]
|
D. Ouelhadj, S. Petrovic, P. Cowling and A. Meisels, Inter-agent cooperation and communication for agent-based robust dynamic scheduling in steel production, Advanced Engineering Informatics, 18 (2004), 161-172.
doi: 10.1016/j.aei.2004.10.003.
|
[27]
|
D. Pacciarelli and M. Pranzo, Production scheduling in a steelmaking-continuous casting plant, Computers and Chemical Engineering, 28 (2004), 2823-2835.
doi: 10.1016/j.compchemeng.2004.08.031.
|
[28]
|
Q. Pan, L. Wang, K. Mao, J. Zhao and M. Zhang, An Effective Artificial Bee Colony Algorithm for a Real-World Hybrid Flowshop Problem in Steelmaking Process, IEEE Transactions on Automation Science and Engineering, 10 (2013), 307-322.
doi: 10.1109/TASE.2012.2204874.
|
[29]
|
H. Sherali, G. Choi and C. Tuncbilek, A Variable Target Value Method for Nondifferentiable Optimization, Operation Research Letters, 26 (2000), 1-8.
doi: 10.1016/S0167-6377(99)00063-2.
|
[30]
|
L. Sun,
Research on the Optimal Scheduling Method for the productive Process of Steelmaking-Refining-Continuous Casting, Ph. D thesis, Northeastern University in Shenyang, 2015.
|
[31]
|
L. Tang, J. Liu, A. Rong and Z. Yang, A review of planning and scheduling systems and methods for integrated steel production, European Journal of Operational Research, 133 (2001), 1-20.
doi: 10.1016/S0377-2217(00)00240-X.
|
[32]
|
L. Tang, P. Luh, J. Liu and L. Fang, Steelmaking process scheduling using Lagrangian relaxation, International Journal of Production Research, 40 (2002), 55-70.
|
[33]
|
L. Tang, G. Wang and Z. Chen, Integrated charge batching and casting width selection at Baosteel, Operations Research, 62 (2014), 772-787.
doi: 10.1287/opre.2014.1278.
|
[34]
|
L. Tang, Y. Zhao and J. Liu, An Improved Differential Evolution Algorithm for Practical Dynamic Scheduling in Steelmaking-continuous Casting Production, IEEE Transactions on Evolutionary Computation, 18 (2014), 209-213.
doi: 10.1109/TEVC.2013.2250977.
|
[35]
|
G. Vieira, J. Hermann and E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies and methods, Journal of Scheduling, 6 (2003), 36-92.
doi: 10.1023/A:1022235519958.
|
[36]
|
R. Xiong, Y. Fan and C. Wu, A dynamic job shop scheduling method based on Lagrangian relaxation, Tsinghua Science and Technology, 4 (1999), 1297-1302.
|
[37]
|
H. Xuan and L. Tang, Scheduling a hybrid flowshop with batch production at the last stage, Computers and Operations Research, 34 (2007), 2718-2733.
doi: 10.1016/j.cor.2005.10.014.
|
[38]
|
S. Yu and Q. Pan, A Rescheduling Method for Operation Time Delay Disturbance in Steelmaking and Continuous Casting Production Process, International Journal of Iron and Steel Research, 19 (2012), 33-41.
doi: 10.1016/S1006-706X(13)60029-1.
|
[39]
|
H. Zhong, X Dong and H. Shi, Research on the load balancing scheduling problem of reentrant hybrid flowshops, Chinese High Technology Letters, 25 (2015), 70-81.
|
[40]
|
H. Zhong, Y Zhu and S. Lin, A dynamic co-evolution compact genetic algorithm for E/T problem, The 17th IFAC Symposium on System Identification, (2015), 1433-1437.
|