• Previous Article
    Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations
  • JIMO Home
  • This Issue
  • Next Article
    Rescheduling optimization of steelmaking-continuous casting process based on the Lagrangian heuristic algorithm
July  2017, 13(3): 1449-1466. doi: 10.3934/jimo.2017001

Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization

1. 

School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

The reviewing process of the paper was handled by Yutaka Takhashi as Guest Editor.

Received  September 2015 Published  December 2016

In this paper, we consider a cognitive radio network with multiple Secondary Users (SUs). The SU packets generated from the SUs are divided into SU1 packets and SU2 packets, and the SU1 packets have higher priority than the SU2 packets. Different from the conventional preemptive priority scheme (called Scheme Ⅰ), we propose a non-preemptive priority scheme for the SU1 packets (called Scheme Ⅱ) to guarantee the transmission continuity of the SU2 packets. By constructing a three-dimensional Markov chain, we give the transition probability matrix of the Markov chain, and obtain the steady-state distribution of the system model. Accordingly, we derive some performance measures, such as the channel utilization, the blocking probability of the SU1 packets, the interruption probability of the SU1 packets and the SU2 packets, the normalized throughput of the SU1 packets, and the average latency of the SU2 packets. Moreover, we provide numerical experiments to compare different performance measures between the two priority schemes. Finally, we show and compare the Nash equilibrium strategy and the socially optimal strategy for the SU2 packets between Scheme Ⅰ and Scheme Ⅱ.

Citation: Yuan Zhao, Wuyi Yue. Cognitive radio networks with multiple secondary users under two kinds of priority schemes: Performance comparison and optimization. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1449-1466. doi: 10.3934/jimo.2017001
References:
[1]

A. S. Alfa, Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System, Springer, New York, 2010. doi: 10.1007/978-1-4419-7314-6. Google Scholar

[2]

I. A. M. BalapuwadugeL. JiaoV. Pla and F. Y. Li, Channel assembling with priority-based queues in cognitive radio networks: Strategies and performance evaluation, IEEE Transactions on Wireless Communications, 13 (2014), 630-645. doi: 10.1109/TWC.2013.120713.121948. Google Scholar

[3]

X. ChenH. Chen and W. Meng, Cooperative communications for cognitive radio networks--From theory to applications, IEEE Communications Surveys & Tutorials, 16 (2014), 1180-1192. doi: 10.1109/SURV.2014.021414.00066. Google Scholar

[4]

J. ChuR. Ma and K. Feng, Stochastic spectrum handoff protocols for partially observable cognitive radio networks, Wireless Networks, 20 (2014), 1003-1022. doi: 10.1007/s11276-013-0658-x. Google Scholar

[5]

C. T. DoN. H. TranM. V. NguyenC. S. Hong and S. Lee, Social optimization strategy in unobserved queueing systems in cognitive radio networks, IEEE Communications Letters, 16 (2012), 1944-1947. doi: 10.1109/LCOMM.2012.111412.120830. Google Scholar

[6]

D. Hamza and S. Aïssa, Enhanced primary and secondary performance through cognitive relaying and leveraging primary feedback, IEEE Transactions on Vehicular Technology, 63 (2014), 2236-2247. doi: 10.1109/TVT.2013.2292532. Google Scholar

[7]

R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, Boston, 2003. doi: 10.1007/978-1-4615-0359-0. Google Scholar

[8]

K. J. KimK. S. Kwak and B. D. Choi, Performance analysis of opportunistic spectrum access protocol for multi-channel cognitive radio networks, Journal of Communications and Networks, 15 (2013), 77-86. doi: 10.1109/JCN.2013.000013. Google Scholar

[9]

Y. LeeC. G. Park and D. B. Sim, Cognitive radio spectrum access with prioritized secondary users, Applied Mathematics & Information Sciences, 6 (2012), 595S-601S. Google Scholar

[10]

X. XuX. Chai and Z. Zhang, Self-organization approaches for optimization in cognitive radio networks, China Communications, 11 (2014), 121-129. doi: 10.1109/CC.2014.6827574. Google Scholar

[11]

Y. ZhangT. JiangL. ZhangD. Qu and W. Peng, Analysis on the transmission delay of priority-based secondary users in cognitive radio networks, Proceedings of the International Conference on Wireless Communications & Signal Processing, (2013), 1-6. Google Scholar

[12]

Z. ZhangK. Long and J. Wang, Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey, IEEE Wireless Communications, 20 (2013), 36-42. doi: 10.1109/MWC.2013.6507392. Google Scholar

[13]

Y. ZhaoS. Jin and W. Yue, Adjustable admission control with threshold in centralized CR networks: Analysis and optimization, Journal of Industrial and Management Optimization, 11 (2015), 1393-1408. doi: 10.3934/jimo.2015.11.1393. Google Scholar

[14]

Y. Zhao and W. Yue, Performance comparison between two kinds of priority schemes in cognitive radio networks, in Queueing Theory and Network Applications (eds. T. V. Do, Y. Takahashi, W. Yue and V. Nguyen), Springer, Switzerland, 383 (2015), 73-80. doi: 10.1007/978-3-319-22267-7_7. Google Scholar

show all references

References:
[1]

A. S. Alfa, Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System, Springer, New York, 2010. doi: 10.1007/978-1-4419-7314-6. Google Scholar

[2]

I. A. M. BalapuwadugeL. JiaoV. Pla and F. Y. Li, Channel assembling with priority-based queues in cognitive radio networks: Strategies and performance evaluation, IEEE Transactions on Wireless Communications, 13 (2014), 630-645. doi: 10.1109/TWC.2013.120713.121948. Google Scholar

[3]

X. ChenH. Chen and W. Meng, Cooperative communications for cognitive radio networks--From theory to applications, IEEE Communications Surveys & Tutorials, 16 (2014), 1180-1192. doi: 10.1109/SURV.2014.021414.00066. Google Scholar

[4]

J. ChuR. Ma and K. Feng, Stochastic spectrum handoff protocols for partially observable cognitive radio networks, Wireless Networks, 20 (2014), 1003-1022. doi: 10.1007/s11276-013-0658-x. Google Scholar

[5]

C. T. DoN. H. TranM. V. NguyenC. S. Hong and S. Lee, Social optimization strategy in unobserved queueing systems in cognitive radio networks, IEEE Communications Letters, 16 (2012), 1944-1947. doi: 10.1109/LCOMM.2012.111412.120830. Google Scholar

[6]

D. Hamza and S. Aïssa, Enhanced primary and secondary performance through cognitive relaying and leveraging primary feedback, IEEE Transactions on Vehicular Technology, 63 (2014), 2236-2247. doi: 10.1109/TVT.2013.2292532. Google Scholar

[7]

R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, Boston, 2003. doi: 10.1007/978-1-4615-0359-0. Google Scholar

[8]

K. J. KimK. S. Kwak and B. D. Choi, Performance analysis of opportunistic spectrum access protocol for multi-channel cognitive radio networks, Journal of Communications and Networks, 15 (2013), 77-86. doi: 10.1109/JCN.2013.000013. Google Scholar

[9]

Y. LeeC. G. Park and D. B. Sim, Cognitive radio spectrum access with prioritized secondary users, Applied Mathematics & Information Sciences, 6 (2012), 595S-601S. Google Scholar

[10]

X. XuX. Chai and Z. Zhang, Self-organization approaches for optimization in cognitive radio networks, China Communications, 11 (2014), 121-129. doi: 10.1109/CC.2014.6827574. Google Scholar

[11]

Y. ZhangT. JiangL. ZhangD. Qu and W. Peng, Analysis on the transmission delay of priority-based secondary users in cognitive radio networks, Proceedings of the International Conference on Wireless Communications & Signal Processing, (2013), 1-6. Google Scholar

[12]

Z. ZhangK. Long and J. Wang, Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey, IEEE Wireless Communications, 20 (2013), 36-42. doi: 10.1109/MWC.2013.6507392. Google Scholar

[13]

Y. ZhaoS. Jin and W. Yue, Adjustable admission control with threshold in centralized CR networks: Analysis and optimization, Journal of Industrial and Management Optimization, 11 (2015), 1393-1408. doi: 10.3934/jimo.2015.11.1393. Google Scholar

[14]

Y. Zhao and W. Yue, Performance comparison between two kinds of priority schemes in cognitive radio networks, in Queueing Theory and Network Applications (eds. T. V. Do, Y. Takahashi, W. Yue and V. Nguyen), Springer, Switzerland, 383 (2015), 73-80. doi: 10.1007/978-3-319-22267-7_7. Google Scholar

Figure 1.  Flow diagram for the proposed non-preemptive priority scheme.
Figure 2.  Time diagram of the system model.
Figure 3.  State transition diagram for the number of SU2 packets in the system model.
Figure 4.  Change trend of the channel utilization $\xi$.
Figure 5.  Change trend of the interruption probability $\gamma_{21}$ of the SU1 packets.
Figure 6.  Change trend of the interruption probability $\gamma_{22}$ of the SU2 packets.
Figure 7.  Change trend of the normalized throughput $\theta_{21}$ of the SU1 packets.
Figure 8.  Change trend of the average latency $\delta_{22}$ of the SU2 packets.
Figure 9.  Individual net benefit $W_I(\lambda_{22})$ vs. arrival rate $\lambda_{22}$ of the SU2 packets.
Figure 10.  Social net benefit $W_S(\lambda_{22})$ vs. arrival rate $\lambda_{22}$ of the SU2 packets.
Table 1.  Numerical results with Nash equilibrium strategy
$\lambda_1$$\lambda_{21}$$\lambda_e$$q_e$
MinMaxMinMax
0.150.200.160.170.800.85
Scheme Ⅰ 0.200.200.130.140.650.70
0.200.250.110.120.550.60
0.150.200.200.201.001.00
Scheme Ⅱ0.200.200.170.180.850.90
0.200.250.150.160.750.80
$\lambda_1$$\lambda_{21}$$\lambda_e$$q_e$
MinMaxMinMax
0.150.200.160.170.800.85
Scheme Ⅰ 0.200.200.130.140.650.70
0.200.250.110.120.550.60
0.150.200.200.201.001.00
Scheme Ⅱ0.200.200.170.180.850.90
0.200.250.150.160.750.80
Table 2.  Numerical results with socially optimal strategy
$\lambda_1$$\lambda_{21}$$\lambda^*$$q^*$
0.150.200.100.50
Scheme Ⅰ 0.200.200.080.40
0.200.250.070.35
0.150.200.130.65
Scheme Ⅱ0.200.200.110.55
0.200.250.100.50
$\lambda_1$$\lambda_{21}$$\lambda^*$$q^*$
0.150.200.100.50
Scheme Ⅰ 0.200.200.080.40
0.200.250.070.35
0.150.200.130.65
Scheme Ⅱ0.200.200.110.55
0.200.250.100.50
Table 3.  Numerical results with admission fee
$\lambda_1$$\lambda_{21}$$\lambda^*$$f$
0.150.200.106.9918
Scheme Ⅰ 0.200.200.086.5472
0.200.250.075.4116
0.150.200.138.1169
Scheme Ⅱ0.200.200.117.1114
0.200.250.106.4127
$\lambda_1$$\lambda_{21}$$\lambda^*$$f$
0.150.200.106.9918
Scheme Ⅰ 0.200.200.086.5472
0.200.250.075.4116
0.150.200.138.1169
Scheme Ⅱ0.200.200.117.1114
0.200.250.106.4127
[1]

Zhanyou Ma, Wenbo Wang, Linmin Hu. Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-14. doi: 10.3934/jimo.2018196

[2]

Biao Xu, Xiuli Xu, Zhong Yao. Equilibrium and optimal balking strategies for low-priority customers in the M/G/1 queue with two classes of customers and preemptive priority. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1599-1615. doi: 10.3934/jimo.2018113

[3]

Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102

[4]

Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026

[5]

Alessia Marigo. Optimal traffic distribution and priority coefficients for telecommunication networks. Networks & Heterogeneous Media, 2006, 1 (2) : 315-336. doi: 10.3934/nhm.2006.1.315

[6]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[7]

Heman Shakeri, Faryad Darabi Sahneh, Caterina Scoglio, Pietro Poggi-Corradini, Victor M. Preciado. Optimal information dissemination strategy to promote preventive behaviors in multilayer epidemic networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 609-623. doi: 10.3934/mbe.2015.12.609

[8]

Ka Wo Lau, Yue Kuen Kwok. Optimal execution strategy of liquidation. Journal of Industrial & Management Optimization, 2006, 2 (2) : 135-144. doi: 10.3934/jimo.2006.2.135

[9]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2018147

[10]

Seunghee Lee, Ganguk Hwang. A new analytical model for optimized cognitive radio networks based on stochastic geometry. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1883-1899. doi: 10.3934/jimo.2017023

[11]

Haruki Katayama, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. Journal of Industrial & Management Optimization, 2014, 10 (1) : 21-40. doi: 10.3934/jimo.2014.10.21

[12]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[13]

Donglei Du, Xiaoyue Jiang, Guochuan Zhang. Optimal preemptive online scheduling to minimize lp norm on two processors. Journal of Industrial & Management Optimization, 2005, 1 (3) : 345-351. doi: 10.3934/jimo.2005.1.345

[14]

Guibin Lu, Qiying Hu, Youying Zhou, Wuyi Yue. Optimal execution strategy with an endogenously determined sales period. Journal of Industrial & Management Optimization, 2005, 1 (3) : 289-304. doi: 10.3934/jimo.2005.1.289

[15]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[16]

Shunfu Jin, Wuyi Yue, Zsolt Saffer. Analysis and optimization of a gated polling based spectrum allocation mechanism in cognitive radio networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 687-702. doi: 10.3934/jimo.2016.12.687

[17]

Yuan Zhao, Wuyi Yue. Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users. Journal of Industrial & Management Optimization, 2019, 15 (1) : 1-14. doi: 10.3934/jimo.2018029

[18]

Yuan Zhao, Wuyi Yue. Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2018195

[19]

Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007

[20]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-29. doi: 10.3934/jimo.2019040

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (36)
  • HTML views (339)
  • Cited by (0)

Other articles
by authors

[Back to Top]