[1]
|
A. Aissani and J. Artalejo, On the single server retrial queue subject to breakdowns, Queueing Systems, 30 (1998), 309-321.
doi: 10.1023/A:1019125323347.
|
[2]
|
I. Atencia, I. Fortes, S. Nishimura and S. Sánchez, A discrete-time retrial queueing system with recurrent customers, Computers & Operations Research, 37 (2010), 1167-1173.
doi: MR2577277.
|
[3]
|
I. Atencia, I. Fortes and S. Sánchez, A discrete-time retrial queueing system with starting failures, Bernoulli feedback and general retrial times, Computers & Industrial Engineering, 57 (2009), 1291-1299.
doi: 10.1016/j.cie.2009.06.011.
|
[4]
|
I. Atencia and A. Pechinkin, A discrete-time queueing system with optional LCFS discipline, Annals of Operations Research, 202 (2013), 3-17.
doi: 10.1007/s10479-012-1097-2.
|
[5]
|
B. Avi-Itzhak and P. Naor, Some queuing problems with the service station subject to breakdown, Operations Research, 11 (1963), 303-320.
doi: 10.1287/opre.11.3.303.
|
[6]
|
Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operations Research Letters, 33 (2005), 201-209.
doi: 10.1016/j.orl.2004.05.006.
|
[7]
|
H. Bruneel, Performance of discrete-time queueing systems, Computers & Operations Research, 20 (1993), 303-320.
doi: 10.1016/0305-0548(93)90006-5.
|
[8]
|
G. Choudhury, On a batch arrival Poisson queue with a random setup time and vacation period, Computers & Operations Research, 25 (1998), 1013-1026.
doi: 10.1016/S0305-0548(98)00038-0.
|
[9]
|
C. Cramer, A seismic hazard uncertainty analysis for the New Madrid seismic zone, Engineering Geology, 62 (2001), 251-266.
doi: 10.1016/S0013-7952(01)00064-3.
|
[10]
|
S. Gao and J. Wang, On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.
doi: 10.3934/jimo.2015.11.779.
|
[11]
|
V. Goswami and G. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations, Computers & Industrial Engineering, 61 (2011), 629-636.
doi: 10.1016/j.cie.2011.04.018.
|
[12]
|
R. Hassin and M. Haviv,
Queue or not to Queue: Equilibrium Behavior in Queueing Systems Kluwer Academic Publishers, 2003.
doi: 10.1007/978-1-4615-0359-0.
|
[13]
|
D. Heyman, The T-policy for the M/G/1 queue, Management Science, 23 (1977), 775-778.
|
[14]
|
K. Kalidass, J. Gnanaraj, S. Gopinath and R. Kasturi, Transient analysis of an M/M/1 queue with a repairable server and multiple vacations, International Journal of Mathematics in Operational Research, 6 (2014), 193-216.
doi: 10.1504/IJMOR.2014.059522.
|
[15]
|
V. Kulkarni and B. Choi, Retrial queues with server subject to breakdowns and repairs, Queueing Systems, 7 (1990), 191-208.
doi: 10.1007/BF01158474.
|
[16]
|
P. Laxmi and S. Demie, Performance analysis of renewal input $(a, c, b)$ policy queue with multiple working vacations and change over times, Journal of Industrial and Management Optimization, 10 (2014), 839-857.
doi: 10.3934/jimo.2014.10.839.
|
[17]
|
P. Laxmi, S. Indira and K. Jyothsna, Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging, Journal of Industrial and Management Optimization, 12 (2016), 1199-1214.
doi: 10.3934/jimo.2016.12.1199.
|
[18]
|
J. Li, N. Tian and M. Liu, Discrete-time GI/Geo/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.
doi: 10.1007/s11134-007-9030-0.
|
[19]
|
J. Li, N. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption, Applied Mathematical Modelling, 32 (2008), 2715-2730.
doi: 10.1016/j.apm.2007.09.017.
|
[20]
|
D. Lim, D. Lee, W. Yang and K. Chae, Analysis of the GI/Geo/1 queue with $N$-policy, Applied Mathematical Modelling, 37 (2013), 4643-4652.
doi: 10.1016/j.apm.2012.09.037.
|
[21]
|
Z. Ma, P. Wang, G. Cui and Y. Hao, The discrete time Geom/Geom/1 repairable queuing system with pseudo-fault and multiple vacations, Journal of Information and Computational Science, 11 (2014), 4667-4678.
|
[22]
|
Z. Ma, P. Wang and W. Yue, The pseudo-fault Geo/Geo/1 queue with setup time and multiple working vacation, Proceedings of the 10th International Conference on Queueing Theory and Network Applications, 383 (2015), 105-112.
doi: 10.1007/978-3-319-22267-7_10.
|
[23]
|
T. Meisling, Discrete-time queuing theory, Operations Research, 6 (1958), 96-105.
doi: 10.1287/opre.6.1.96.
|
[24]
|
S. Ndreca and B. Scoppola, Discrete time GI/Geom/1 queueing system with priority, European Journal of Operational Research, 189 (2008), 1403-1408.
doi: 10.1016/j.ejor.2007.02.056.
|
[25]
|
M. Neuts,
Matrix-geometric Solution in Stochastic Model: An Algorithmic Application, The Johns Hopkins University Press, 1981.
|
[26]
|
E. Papatheou, G. Manson, R. J. Barthorpe and K. Worden, The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing, Journal of Sound and Vibration, 333 (2014), 971-990.
doi: 10.1016/j.jsv.2013.10.013.
|
[27]
|
L. Servi and S. Finn, M/M/1 queues with working vacations (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.
doi: 10.1016/S0166-5316(02)00057-3.
|
[28]
|
W. Sun, H. Zhang and N. Tian, The discrete-time Geom/G/1 queue with multiple adaptive vacations and server setup/closedown times, International Journal of Management Science and Engineering Management, 2 (2007), 289-296.
|
[29]
|
N. Tian and Z. Zhang, The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems, 40 (2002), 283-294.
doi: 10.1023/A:1014711529740.
|
[30]
|
R. Tian, D. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under $N$-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.
doi: 10.3934/jimo.2015.11.715.
|
[31]
|
D. Towsley and S. Tripathi, A single server priority queue with server failures and queue flushing, Operations Research Letters, 10 (1991), 353-362.
doi: 10.1016/0167-6377(91)90008-D.
|
[32]
|
C. Wei, Z. Zou and Y. Qin, Discrete time Geom/G/1 queue with second optional service and server breakdowns, Fuzzy Engineering and Operations Research, 147 (2012), 557-568.
doi: 10.1007/978-3-642-28592-9_59.
|
[33]
|
M. Yadin and P. Naor, Queueing systems with a removable service station, Operations Research Quarterly, 14 (1963), 393-405.
|
[34]
|
Z. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations, Queueing Systems, 38 (2001), 419-429.
doi: 10.1023/A:1010947911863.
|
[35]
|
Z. Zhang and N. Tian, The $N$-threshold policy for the GI/M/1 queue, Operations Research Letters, 32 (2004), 77-84.
doi: 10.1016/S0167-6377(03)00067-1.
|