\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations

Abstract / Introduction Full Text(HTML) Figure(7) / Table(4) Related Papers Cited by
  • In this paper, we consider a discrete time Geo/Geo/1 repairable queueing system with a pseudo-fault, setup time, $N$-policy and multiple working vacations. We assume that the service interruption is caused by pseudo-fault or breakdown, and occurs only when the server is busy. If the pseudo-fault occurs, the server will enter into a vacation period instead of a busy period. At a breakdown instant, the repair period starts immediately and after repaired the server is assumed to be as good as new. Using a quasi birth-and-death chain, we establish a two-dimensional Markov chain. We obtain the distribution of the steady-state queue length by using a matrix-geometric solution method. Moreover, we analyze the considered queueing system and provide several performance indices of the system in steady-state. According to the queueing system, we first investigate the individual and social optimal behaviors of the customer. Then we propose a pricing policy to optimize the system socially, and study the Nash equilibrium and social optimization of the proposed strategy to determine the optimal expected parameters of the system. Finally, we present some numerical results to illustrate the effect of several parameters on the systems.

    Mathematics Subject Classification: Primary: 60K25; Secondary: 90B22.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The schematic diagram for the model description

    Figure 2.  The relation of $P_B$ to $\mu_v$ and $N$

    Figure 3.  The relation of $E[L]$ to $p$ and $N$

    Figure 4.  The relation of $E[L_q]$ to $\mu_b$ and $\beta$

    Figure 5.  The relation of $P_{q2}$ to $p$ and $\alpha$

    Figure 6.  Individual benefit $U_I$ versus arrival rate $p$

    Figure 7.  Social benefit $U_S$ versus arrival rate $p$

    Table 1.  The relation of $E[W]$ to $q$ and $\theta$

    $\theta$The expected waiting time $E[W]$
    $q=0$$q=0.05$$q=0.1$$q=0.15$$q=0.2$$q=0.25$$q=0.3$
    0.320.20722.37924.62226.88529.14831.43033.798
    0.519.94222.01924.14026.25028.31830.35132.396
    0.719.84321.88423.95826.00928.00629.94731.875
     | Show Table
    DownLoad: CSV

    Table 2.  The relation of $E[L]$ to $\mu_b$ and $\gamma$

    $\gamma$The expected queue length $E[L]$
    $\mu_b=0.6$$\mu_b=0.65$$\mu_b=0.7$$\mu_b=0.75$$\mu_b=0.8$$\mu_b=0.85$$\mu_b=0.9$
    0.432.13917.64514.18412.44911.38710.67310.165
    0.615.06912.82011.56010.75710.2079.8099.508
    0.813.10011.69710.83010.2509.8389.5299.288
     | Show Table
    DownLoad: CSV

    Table 3.  Comparison of individually and socially optimal arrival rate

    Vacation parameter $\theta$Individually optimal arrival rate $p^e$Socially optimal arrival rate $p^*$
    0.20.3480.204
    0.40.3780.228
    0.80.3920.240
     | Show Table
    DownLoad: CSV

    Table 4.  Numerical results for admission fee

    Vacation parameter $\theta$Socially maximum benefit $U_S^*$Admission fee $f$
    0.228.726140.813
    0.430.796135.071
    0.833.101133.754
     | Show Table
    DownLoad: CSV
  • [1] A. Aissani and J. Artalejo, On the single server retrial queue subject to breakdowns, Queueing Systems, 30 (1998), 309-321.  doi: 10.1023/A:1019125323347.
    [2] I. AtenciaI. FortesS. Nishimura and S. Sánchez, A discrete-time retrial queueing system with recurrent customers, Computers & Operations Research, 37 (2010), 1167-1173.  doi: MR2577277.
    [3] I. AtenciaI. Fortes and S. Sánchez, A discrete-time retrial queueing system with starting failures, Bernoulli feedback and general retrial times, Computers & Industrial Engineering, 57 (2009), 1291-1299.  doi: 10.1016/j.cie.2009.06.011.
    [4] I. Atencia and A. Pechinkin, A discrete-time queueing system with optional LCFS discipline, Annals of Operations Research, 202 (2013), 3-17.  doi: 10.1007/s10479-012-1097-2.
    [5] B. Avi-Itzhak and P. Naor, Some queuing problems with the service station subject to breakdown, Operations Research, 11 (1963), 303-320.  doi: 10.1287/opre.11.3.303.
    [6] Y. Baba, Analysis of a GI/M/1 queue with multiple working vacations, Operations Research Letters, 33 (2005), 201-209.  doi: 10.1016/j.orl.2004.05.006.
    [7] H. Bruneel, Performance of discrete-time queueing systems, Computers & Operations Research, 20 (1993), 303-320.  doi: 10.1016/0305-0548(93)90006-5.
    [8] G. Choudhury, On a batch arrival Poisson queue with a random setup time and vacation period, Computers & Operations Research, 25 (1998), 1013-1026.  doi: 10.1016/S0305-0548(98)00038-0.
    [9] C. Cramer, A seismic hazard uncertainty analysis for the New Madrid seismic zone, Engineering Geology, 62 (2001), 251-266.  doi: 10.1016/S0013-7952(01)00064-3.
    [10] S. Gao and J. Wang, On a discrete-time GI$^X$/Geo/1/N-G queue with randomized working vacations and at most $J$ vacations, Journal of Industrial and Management Optimization, 11 (2015), 779-806.  doi: 10.3934/jimo.2015.11.779.
    [11] V. Goswami and G. Mund, Analysis of discrete-time batch service renewal input queue with multiple working vacations, Computers & Industrial Engineering, 61 (2011), 629-636.  doi: 10.1016/j.cie.2011.04.018.
    [12] R. Hassin and M. Haviv, Queue or not to Queue: Equilibrium Behavior in Queueing Systems Kluwer Academic Publishers, 2003. doi: 10.1007/978-1-4615-0359-0.
    [13] D. Heyman, The T-policy for the M/G/1 queue, Management Science, 23 (1977), 775-778. 
    [14] K. KalidassJ. GnanarajS. Gopinath and R. Kasturi, Transient analysis of an M/M/1 queue with a repairable server and multiple vacations, International Journal of Mathematics in Operational Research, 6 (2014), 193-216.  doi: 10.1504/IJMOR.2014.059522.
    [15] V. Kulkarni and B. Choi, Retrial queues with server subject to breakdowns and repairs, Queueing Systems, 7 (1990), 191-208.  doi: 10.1007/BF01158474.
    [16] P. Laxmi and S. Demie, Performance analysis of renewal input $(a, c, b)$ policy queue with multiple working vacations and change over times, Journal of Industrial and Management Optimization, 10 (2014), 839-857.  doi: 10.3934/jimo.2014.10.839.
    [17] P. LaxmiS. Indira and K. Jyothsna, Ant colony optimization for optimum service times in a Bernoulli schedule vacation interruption queue with balking and reneging, Journal of Industrial and Management Optimization, 12 (2016), 1199-1214.  doi: 10.3934/jimo.2016.12.1199.
    [18] J. LiN. Tian and M. Liu, Discrete-time GI/Geo/1 queue with multiple working vacations, Queueing Systems, 56 (2007), 53-63.  doi: 10.1007/s11134-007-9030-0.
    [19] J. LiN. Tian and Z. Ma, Performance analysis of GI/M/1 queue with working vacations and vacation interruption, Applied Mathematical Modelling, 32 (2008), 2715-2730.  doi: 10.1016/j.apm.2007.09.017.
    [20] D. LimD. LeeW. Yang and K. Chae, Analysis of the GI/Geo/1 queue with $N$-policy, Applied Mathematical Modelling, 37 (2013), 4643-4652.  doi: 10.1016/j.apm.2012.09.037.
    [21] Z. MaP. WangG. Cui and Y. Hao, The discrete time Geom/Geom/1 repairable queuing system with pseudo-fault and multiple vacations, Journal of Information and Computational Science, 11 (2014), 4667-4678. 
    [22] Z. MaP. Wang and W. Yue, The pseudo-fault Geo/Geo/1 queue with setup time and multiple working vacation, Proceedings of the 10th International Conference on Queueing Theory and Network Applications, 383 (2015), 105-112.  doi: 10.1007/978-3-319-22267-7_10.
    [23] T. Meisling, Discrete-time queuing theory, Operations Research, 6 (1958), 96-105.  doi: 10.1287/opre.6.1.96.
    [24] S. Ndreca and B. Scoppola, Discrete time GI/Geom/1 queueing system with priority, European Journal of Operational Research, 189 (2008), 1403-1408.  doi: 10.1016/j.ejor.2007.02.056.
    [25] M. Neuts, Matrix-geometric Solution in Stochastic Model: An Algorithmic Application, The Johns Hopkins University Press, 1981.
    [26] E. PapatheouG. MansonR. J. Barthorpe and K. Worden, The use of pseudo-faults for damage location in SHM: An experimental investigation on a Piper Tomahawk aircraft wing, Journal of Sound and Vibration, 333 (2014), 971-990.  doi: 10.1016/j.jsv.2013.10.013.
    [27] L. Servi and S. Finn, M/M/1 queues with working vacations (M/M/1/WV), Performance Evaluation, 50 (2002), 41-52.  doi: 10.1016/S0166-5316(02)00057-3.
    [28] W. SunH. Zhang and N. Tian, The discrete-time Geom/G/1 queue with multiple adaptive vacations and server setup/closedown times, International Journal of Management Science and Engineering Management, 2 (2007), 289-296. 
    [29] N. Tian and Z. Zhang, The discrete-time GI/Geo/1 queue with multiple vacations, Queueing Systems, 40 (2002), 283-294.  doi: 10.1023/A:1014711529740.
    [30] R. TianD. Yue and W. Yue, Optimal balking strategies in an M/G/1 queueing system with a removable server under $N$-policy, Journal of Industrial and Management Optimization, 11 (2015), 715-731.  doi: 10.3934/jimo.2015.11.715.
    [31] D. Towsley and S. Tripathi, A single server priority queue with server failures and queue flushing, Operations Research Letters, 10 (1991), 353-362.  doi: 10.1016/0167-6377(91)90008-D.
    [32] C. WeiZ. Zou and Y. Qin, Discrete time Geom/G/1 queue with second optional service and server breakdowns, Fuzzy Engineering and Operations Research, 147 (2012), 557-568.  doi: 10.1007/978-3-642-28592-9_59.
    [33] M. Yadin and P. Naor, Queueing systems with a removable service station, Operations Research Quarterly, 14 (1963), 393-405. 
    [34] Z. Zhang and N. Tian, Discrete time Geo/G/1 queue with multiple adaptive vacations, Queueing Systems, 38 (2001), 419-429.  doi: 10.1023/A:1010947911863.
    [35] Z. Zhang and N. Tian, The $N$-threshold policy for the GI/M/1 queue, Operations Research Letters, 32 (2004), 77-84.  doi: 10.1016/S0167-6377(03)00067-1.
  • 加载中

Figures(7)

Tables(4)

SHARE

Article Metrics

HTML views(3212) PDF downloads(238) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return