• Previous Article
    Effect of mobility of smart meters on performance of advanced metering infrastructure
  • JIMO Home
  • This Issue
  • Next Article
    Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with N-policy, setup time and multiple working vacations
July  2017, 13(3): 1483-1494. doi: 10.3934/jimo.2017003

Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network

1. 

ROBOTIS Co., Ltd., Seoul, Korea

2. 

Research Institute for Information and Communication Technology, Korea University, Seoul, Korea

3. 

The School of Electrical Engineering, Korea University, Seoul, Korea

* Corresponding author: Bong Dae Choi

The reviewing process of the paper was handled by Wuyi Yue and Yutaka Takahashi as Guest Editors

Received  October 2015 Published  December 2016

Fund Project: The second author is supported by the National Research Foundation of Korea grants funded by Korea government(MEST)(No.2012-008099) and the third author is supported by a Korea University Grant.

We propose a distributed MAC protocol for cognitive radio when primary network is IEEE 802.16e/m WiMAX. Our proposed MAC protocol is the Truncated Binary Exponential Backoff Algorithm where the backoff window size of algorithm is doubled at each collision, and the backoff counter is operated by frame basis in IEEE 802.16e/m and is freezed at a frame with no idle slots. We model our proposed MAC protocol as a 3-dimensional discrete-time Markov chain and obtain steady state probability of the Markov chain by using a censored Markov chain method. Based on this steady state probability, we obtain the throughput, packet loss probability and packet delay distribution of secondary users. Our numerical examples show that the initial contention window size can be determined according to the number of secondary users in order to obtain higher throughput for secondary users, and the maximum backoff window has a large impact on the secondary user's packet loss probability. Secondary users' packet delay distribution is much influenced by the initial contention window size and the number of secondary users.

Citation: Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003
References:
[1]

I. F. AkyildizW. Y. LeeM. C. Vuran and S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks, 50 (2006), 2127-2159.   Google Scholar

[2] L. Breuer and D. Baum, An Introduction to Queueing Theory and Matrix-Analytic Methods, Springer, Berlin, 2005.   Google Scholar
[3]

J. W. Chong, Y. Sung and D. K. Sung, RawPEACH: Multiband CSMA/CA-based cognitive radio networks, J. Comm. Net. 11 APRIL 2009. Google Scholar

[4]

S. Deng, Traffic characteristics of packet voice, IEEE Int Conf Commun 1995;3: 1369. 74. Google Scholar

[5]

R. Fantacci and D. Tarchi, A novel cognitive networking scenario for IEEE 802. 16 networks, Proc. of IEEE GLOBECOM 2009, Honolulu, Hawaii, USA, Dec. 2009. Google Scholar

[6]

E. HwangK. J. KimA. Lyakhov and B. D. Choi, Delay analysis of bandwidth request in truncated binary exponential backoff mechanism over error-free/error-prone channels in IEEE802.16e, Proc. of the 16th International Workshop on Quality of Service, (2008), 131-138.   Google Scholar

[7]

E. HwangK. J. Kim and B. D. Choi, Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel, Journal of Industrial and Management Optimization, 5 (2009), 525-540.  doi: 10.3934/jimo.2009.5.525.  Google Scholar

[8]

J. G. Kemeny, J. L. Snell and A. W. Knapp, Denumerable Markov Chains Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 1976.  Google Scholar

[9]

K. J. KimJ. S. Park and B. D. Choi, Admission control scheme of extended rtPS algorithm for VolP sevice in IEEE 802.163e with adaptive modulation and coding, Journal of Industrial and Management Optimization, 5 (2010), 641-660.  doi: 10.3934/jimo.2010.6.641.  Google Scholar

[10]

IEEE std 802. 16e-2006. IEEE standard for local and metropolitan area networks-part 16: Air interface for fixed and mobile broadband wireless access systems. amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1, Feb. 2006. Google Scholar

[11]

IEEE P802. 16m/D3, December, 2009. Google Scholar

show all references

References:
[1]

I. F. AkyildizW. Y. LeeM. C. Vuran and S. Mohanty, Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks, 50 (2006), 2127-2159.   Google Scholar

[2] L. Breuer and D. Baum, An Introduction to Queueing Theory and Matrix-Analytic Methods, Springer, Berlin, 2005.   Google Scholar
[3]

J. W. Chong, Y. Sung and D. K. Sung, RawPEACH: Multiband CSMA/CA-based cognitive radio networks, J. Comm. Net. 11 APRIL 2009. Google Scholar

[4]

S. Deng, Traffic characteristics of packet voice, IEEE Int Conf Commun 1995;3: 1369. 74. Google Scholar

[5]

R. Fantacci and D. Tarchi, A novel cognitive networking scenario for IEEE 802. 16 networks, Proc. of IEEE GLOBECOM 2009, Honolulu, Hawaii, USA, Dec. 2009. Google Scholar

[6]

E. HwangK. J. KimA. Lyakhov and B. D. Choi, Delay analysis of bandwidth request in truncated binary exponential backoff mechanism over error-free/error-prone channels in IEEE802.16e, Proc. of the 16th International Workshop on Quality of Service, (2008), 131-138.   Google Scholar

[7]

E. HwangK. J. Kim and B. D. Choi, Delay distribution and loss probability of bandwidth requests under truncated binary exponential backoff mechanism in IEEE 802.16e over Gilbert-Elliot error channel, Journal of Industrial and Management Optimization, 5 (2009), 525-540.  doi: 10.3934/jimo.2009.5.525.  Google Scholar

[8]

J. G. Kemeny, J. L. Snell and A. W. Knapp, Denumerable Markov Chains Graduate Texts in Mathematics, Springer-Verlag, New York, second edition, 1976.  Google Scholar

[9]

K. J. KimJ. S. Park and B. D. Choi, Admission control scheme of extended rtPS algorithm for VolP sevice in IEEE 802.163e with adaptive modulation and coding, Journal of Industrial and Management Optimization, 5 (2010), 641-660.  doi: 10.3934/jimo.2010.6.641.  Google Scholar

[10]

IEEE std 802. 16e-2006. IEEE standard for local and metropolitan area networks-part 16: Air interface for fixed and mobile broadband wireless access systems. amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1, Feb. 2006. Google Scholar

[11]

IEEE P802. 16m/D3, December, 2009. Google Scholar

Figure 1.  An example of frame structure of IEEE 802.16e system
Figure 2.  Secondary users' throughput versus $N_s$ ($N_p=160$)
Figure 3.  Secondary users' throughput versus $N_s$ ($N_p=120$)
Figure 4.  Secondary users' packet loss probability versus $m$
Figure 5.  Secondary users' packet loss probability versus $N_p$
Figure 6.  Delay distribution versus $W_0$ ($N_s=30$)
Figure 7.  Delay distribution versus $W_0$ ($N_s=60$)
Table 1.  Parameter values used in numerical examples
ParameterValue
$N_{slot}$140
$\alpha$0.9432
$\beta$0.9692
$R_t$1
ParameterValue
$N_{slot}$140
$\alpha$0.9432
$\beta$0.9692
$R_t$1
[1]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[2]

Iris Anshel, Derek Atkins, Dorian Goldfeld, Paul E. Gunnells. Ironwood meta key agreement and authentication protocol. Advances in Mathematics of Communications, 2021, 15 (3) : 397-413. doi: 10.3934/amc.2020073

[3]

Chiara Spadafora, Riccardo Longo, Massimiliano Sala. A coercion-resistant blockchain-based E-voting protocol with receipts. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021005

[4]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[7]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[8]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[9]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[10]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[11]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[12]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[13]

Lin Yang, Yejuan Wang, Tomás Caraballo. Regularity of global attractors and exponential attractors for $ 2 $D quasi-geostrophic equations with fractional dissipation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021093

[14]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[15]

Benrong Zheng, Xianpei Hong. Effects of take-back legislation on pricing and coordination in a closed-loop supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021035

[16]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[17]

Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021042

[18]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[19]

Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021062

[20]

Qiang Lin, Yang Xiao, Jingju Zheng. Selecting the supply chain financing mode under price-sensitive demand: Confirmed warehouse financing vs. trade credit. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2031-2049. doi: 10.3934/jimo.2020057

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (58)
  • HTML views (437)
  • Cited by (1)

Other articles
by authors

[Back to Top]