July  2017, 13(3): 1553-1586. doi: 10.3934/jimo.2017007

Optimum pricing strategy for complementary products with reservation price in a supply chain model

Department of Industrial & Management Engineering, Hanyang University, Ansan Gyeonggi-do, 15588, South Korea

* Corresponding author: mitalisarkar.ms@gmail.com (Mitali Sarkar), Phone: +82-1074901981, Fax: +82-31-436-8146

Received  November 2015 Published  December 2016

This paper describes a two-echelon supply chain model with two manufacturers and one common retailer. Two types of complementary products are produced by two manufacturers, and the common retailer buys products separately using a reservation price and bundles them for sale. The demands of manufacturers and retailer are assumed to be stochastic in nature. When the retailer orders for products, any one of manufacturers agrees to allow those products, and the rest of the manufacturers have to provide the same amount. The profits of two manufacturers and the retailer are maximized by using Stackelberg game policy. By applying a game theoretical approach, several analytical solutions are obtained. For some cases, this model obtains quasi-closed-form solutions, for others, it finds closed-form solutions. Some numerical examples, sensitivity analysis, managerial insights, and graphical illustrations are given to illustrate the model.

Citation: Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007
References:
[1]

A. Banerjee, A joint economic-lot-size model for purchaser and vendor, Decision Sciences, 17 (1986), 292-311.  doi: 10.1111/j.1540-5915.1986.tb00228.x.  Google Scholar

[2]

L. E. Cárdenas-Barrón and S. S. Sana, A production-inventory model for a two-echelon supply chain when demand is dependent on sales teams' initiatives, International Journal of Production Economics, 155 (2014), 249-258.   Google Scholar

[3]

C. S. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[4]

A. L. EI-Ansary and L. W. Stern, Power measurement in the distribution channel, Journal of Marketing Research, 9 (1972), 47-52.   Google Scholar

[5]

G. Ertek and P. M. Griffin, Supplier-and buyer-driven channels in a two-stage supply chain, IIE Transactions, 34 (2002), 691-700.  doi: 10.1080/07408170208928905.  Google Scholar

[6]

J. GabszewiczN. Sonnac and X. Wauthy, On price competition with complementary goods, Economics Letters, 70 (2001), 431-437.  doi: 10.1016/S0165-1765(00)00383-9.  Google Scholar

[7]

S. K. Goyal, An integrated inventory model for a single supplier-single customer problem, International Journal of Production Research, 15 (1977), 107-111.  doi: 10.1080/00207547708943107.  Google Scholar

[8]

S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment, Decision Sciences, 19 (1988), 236-241.  doi: 10.1111/j.1540-5915.1988.tb00264.x.  Google Scholar

[9]

C. C. Hsieh and C. H. Wu, Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.  doi: 10.1016/j.ejor.2008.02.019.  Google Scholar

[10]

K. F. McCardleK. Rajaram and C. S. Tang, Bundling retail products: Models and analysis, European Journal of Operational Research, 177 (2007), 1197-1217.  doi: 10.1016/j.ejor.2005.11.009.  Google Scholar

[11]

N. M. ModakS. Panda and S. S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International Journal of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.  Google Scholar

[12]

S. MukhopadhyayX. Yue and X. Zhu, A Stackelberg model of pricing of complementary goods under information asymmetry, International Journal of Production Economics, 134 (2011), 424-433.  doi: 10.1016/j.ijpe.2009.11.015.  Google Scholar

[13]

K. PanK. K. LaiS. C. H. Leung and D. Xiao, Revenue-sharing versus wholesale price mechanisms under different channel power structures, European Journal of Operational Research, 203 (2010), 532-538.  doi: 10.1016/j.ejor.2009.08.010.  Google Scholar

[14]

B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products Mathematical Problems in Engineering 2016 (2016), Article ID 6318737, 14 pages. doi: 10.1155/2016/6318737.  Google Scholar

[15]

B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Applied Mathematical Modelling, 37 (2013), 3138-3151.  doi: 10.1016/j.apm.2012.07.026.  Google Scholar

[16]

B. Sarkar and A. Majumder, Integrated vendor-buyer supply chain model with vendors setup cost reduction, Applied Mathematics and Computation, 224 (2013), 362-371.  doi: 10.1016/j.amc.2013.08.072.  Google Scholar

[17]

B. Sarkar, S. Saren, D. Sinha and S. Hur, Effect of unequal lot sizes, variable setup cost, and carbon emission cost in a supply chain model Mathematical Problems in Engineering 2015 (2015), Article ID 469486, 13 pages. doi: 10.1155/2015/469486.  Google Scholar

[18]

J. WeiJ. Zhao and Y. Li, Pricing decisions for complementary products with firms' different market powers, European Journal of Operational Research, 224 (2013), 507-519.  doi: 10.1016/j.ejor.2012.09.011.  Google Scholar

[19]

J. WeiJ. Zhao and Y. Li, Price and warranty period decisions for complementary products with horizontal firms' cooperation/noncooperation strategies, Journal of Cleaner Production, 105 (2015), 86-102.  doi: 10.1016/j.jclepro.2014.09.059.  Google Scholar

[20]

C. H. WuC. W. Chen and C. C. Hsieh, Competitive pricing decisions in a two echelon supply chain with horizontal and vertical competition, International Journal of Production Economics, 135 (2012), 265-274.  doi: 10.1016/j.ijpe.2011.07.020.  Google Scholar

[21]

Z. YaoS. C. H. Leung and K. K. Lai, Manufacturer's revenue-sharing contract and retail competition, European Journal of Operational Research, 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

[22]

X. YueS. Mukhopadhyay and X. Zhu, A Bertrand model of pricing of complementary goods under information asymmetry, Journal of Business Research, 59 (2006), 1182-1192.  doi: 10.1016/j.jbusres.2005.06.005.  Google Scholar

[23]

J. ZhaoW. TangR. Zhao and J. Wei, Pricing decisions for substitutable products with a common retailer in fuzzy environments, European Journal of Operational Research, 216 (2012), 409-419.  doi: 10.1016/j.ejor.2011.07.026.  Google Scholar

show all references

References:
[1]

A. Banerjee, A joint economic-lot-size model for purchaser and vendor, Decision Sciences, 17 (1986), 292-311.  doi: 10.1111/j.1540-5915.1986.tb00228.x.  Google Scholar

[2]

L. E. Cárdenas-Barrón and S. S. Sana, A production-inventory model for a two-echelon supply chain when demand is dependent on sales teams' initiatives, International Journal of Production Economics, 155 (2014), 249-258.   Google Scholar

[3]

C. S. Choi, Price competition in a channel structure with a common retailer, Marketing Science, 10 (1991), 271-296.  doi: 10.1287/mksc.10.4.271.  Google Scholar

[4]

A. L. EI-Ansary and L. W. Stern, Power measurement in the distribution channel, Journal of Marketing Research, 9 (1972), 47-52.   Google Scholar

[5]

G. Ertek and P. M. Griffin, Supplier-and buyer-driven channels in a two-stage supply chain, IIE Transactions, 34 (2002), 691-700.  doi: 10.1080/07408170208928905.  Google Scholar

[6]

J. GabszewiczN. Sonnac and X. Wauthy, On price competition with complementary goods, Economics Letters, 70 (2001), 431-437.  doi: 10.1016/S0165-1765(00)00383-9.  Google Scholar

[7]

S. K. Goyal, An integrated inventory model for a single supplier-single customer problem, International Journal of Production Research, 15 (1977), 107-111.  doi: 10.1080/00207547708943107.  Google Scholar

[8]

S. K. Goyal, A joint economic-lot-size model for purchaser and vendor: A comment, Decision Sciences, 19 (1988), 236-241.  doi: 10.1111/j.1540-5915.1988.tb00264.x.  Google Scholar

[9]

C. C. Hsieh and C. H. Wu, Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.  doi: 10.1016/j.ejor.2008.02.019.  Google Scholar

[10]

K. F. McCardleK. Rajaram and C. S. Tang, Bundling retail products: Models and analysis, European Journal of Operational Research, 177 (2007), 1197-1217.  doi: 10.1016/j.ejor.2005.11.009.  Google Scholar

[11]

N. M. ModakS. Panda and S. S. Sana, Three-echelon supply chain coordination considering duopolistic retailers with perfect quality products, International Journal of Production Economics, 182 (2016), 564-578.  doi: 10.1016/j.ijpe.2015.05.021.  Google Scholar

[12]

S. MukhopadhyayX. Yue and X. Zhu, A Stackelberg model of pricing of complementary goods under information asymmetry, International Journal of Production Economics, 134 (2011), 424-433.  doi: 10.1016/j.ijpe.2009.11.015.  Google Scholar

[13]

K. PanK. K. LaiS. C. H. Leung and D. Xiao, Revenue-sharing versus wholesale price mechanisms under different channel power structures, European Journal of Operational Research, 203 (2010), 532-538.  doi: 10.1016/j.ejor.2009.08.010.  Google Scholar

[14]

B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products Mathematical Problems in Engineering 2016 (2016), Article ID 6318737, 14 pages. doi: 10.1155/2016/6318737.  Google Scholar

[15]

B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Applied Mathematical Modelling, 37 (2013), 3138-3151.  doi: 10.1016/j.apm.2012.07.026.  Google Scholar

[16]

B. Sarkar and A. Majumder, Integrated vendor-buyer supply chain model with vendors setup cost reduction, Applied Mathematics and Computation, 224 (2013), 362-371.  doi: 10.1016/j.amc.2013.08.072.  Google Scholar

[17]

B. Sarkar, S. Saren, D. Sinha and S. Hur, Effect of unequal lot sizes, variable setup cost, and carbon emission cost in a supply chain model Mathematical Problems in Engineering 2015 (2015), Article ID 469486, 13 pages. doi: 10.1155/2015/469486.  Google Scholar

[18]

J. WeiJ. Zhao and Y. Li, Pricing decisions for complementary products with firms' different market powers, European Journal of Operational Research, 224 (2013), 507-519.  doi: 10.1016/j.ejor.2012.09.011.  Google Scholar

[19]

J. WeiJ. Zhao and Y. Li, Price and warranty period decisions for complementary products with horizontal firms' cooperation/noncooperation strategies, Journal of Cleaner Production, 105 (2015), 86-102.  doi: 10.1016/j.jclepro.2014.09.059.  Google Scholar

[20]

C. H. WuC. W. Chen and C. C. Hsieh, Competitive pricing decisions in a two echelon supply chain with horizontal and vertical competition, International Journal of Production Economics, 135 (2012), 265-274.  doi: 10.1016/j.ijpe.2011.07.020.  Google Scholar

[21]

Z. YaoS. C. H. Leung and K. K. Lai, Manufacturer's revenue-sharing contract and retail competition, European Journal of Operational Research, 186 (2008), 637-651.  doi: 10.1016/j.ejor.2007.01.049.  Google Scholar

[22]

X. YueS. Mukhopadhyay and X. Zhu, A Bertrand model of pricing of complementary goods under information asymmetry, Journal of Business Research, 59 (2006), 1182-1192.  doi: 10.1016/j.jbusres.2005.06.005.  Google Scholar

[23]

J. ZhaoW. TangR. Zhao and J. Wei, Pricing decisions for substitutable products with a common retailer in fuzzy environments, European Journal of Operational Research, 216 (2012), 409-419.  doi: 10.1016/j.ejor.2011.07.026.  Google Scholar

Figure 1.  Graphical representation for Case 1.1, total profit of manufacturer 1 versus selling-price and lot size
Figure 2.  Graphical representation for Case 1.1, total profit of manufacturer 2 versus selling-price
Figure 3.  Graphical representation for Case 1.1, total profit of retailer versus selling-price of bundle product
Figure 4.  Graphical representation for Case 1.2, total profit of manufacturer 1 versus selling-price and lot size
Figure 5.  Graphical representation for Case 1.2, total profit of manufacturer 2 and retailer versus selling-price and selling-price of bundle product
Figure 6.  Graphical representation for Case 2.1, total profit of manufacturer 2 versus selling-price and lot size
Figure 7.  Graphical representation for Case 2.1, total profit of manufacturer 1 versus sellingprice
Figure 8.  Graphical representation for Case 2.1, total profit of retailer versus selling-price of bundle product
Figure 9.  Graphical representation for Case 2.2, total profit of manufacturer 2 versus selling price and lot size
Figure 10.  Graphical representation for Case 2.2, total profit of manufacturer 1 and retailer versus selling-price and selling-price of bundle product
Figure 11.  Comparative studies of cooperation and non-cooperation for the selling-price of product 2 of manufacturer 2 in Case 1. Blue ink of the graphical representation indicates under cooperative strategy and the red ink of the graphical representation indicates under noncooperative strategy
Figure 12.  Comparative studies of cooperation and non-cooperation for the selling-price of bundle product of retailer in Case 1. Blue ink of the graphical representation indicates under cooperative strategy and the red ink of the graphical representation indicates under noncooperative strategy
Figure 13.  Comparative studies of cooperation and non-cooperation for the selling-price of product 1 of manufacturer 1 in Case 2. Blue ink of the graphical representation indicates under cooperative strategy and the red ink of the graphical representation indicates under noncooperative strategy
Figure 14.  Comparative studies of cooperation and non-cooperation for the selling-price of bundle product of retailer in Case 2. Blue ink of the graphical representation indicates under cooperative strategy and the red ink of the graphical representation indicates under noncooperative strategy
Table 1.  Comparison between the contributions of different authors
Author (s)SCMCompetitive price studyReservation priceGame approachStochastic demand
Choi [3]
Yue et al. [22]
Mukhopadhyay
et al. [12]
Wei et al. [18]
Cárdenas-Barrón and Sana [2]
Sarkar [14]
McCardle et al. [10]
This Model
Author (s)SCMCompetitive price studyReservation priceGame approachStochastic demand
Choi [3]
Yue et al. [22]
Mukhopadhyay
et al. [12]
Wei et al. [18]
Cárdenas-Barrón and Sana [2]
Sarkar [14]
McCardle et al. [10]
This Model
Decision variables
$Q$ order quantity (units)
$P_{i}$ selling-price of product j, j=1, 2 ($/unit)
$P_{r}$ selling-price of the bundle product ($/unit)
Random variables
$D_{m_{i}}$ demand for product j, j=1, 2 (units)
$D_{r}$ demand for the bundle product (units)
Parameters
$C_{i}$ manufacturing cost of product j, j=1, 2 ($/unit)
$h_{m_{i}}$ holding cost of product j per unit per unit time, j=1, 2 ($/unit/unit time)
$h_{r}$ holding cost of the bundle product per unit per unit time ($/unit/unit time)
$S_{m_{i}}$ setup cost per setup of product j, j=1, 2 ($/unit)
$K_{m_{i}}$ production rate of product j, j=1, 2 (units)
$M$ known market size (units)
$A$ ordering cost per order of the retailer ($/order)
$I_{m_{i1}}$ inventory of manufacturer i at $ t \in[0, t_{m_{i}}]$, i=1, 2
$I_{m_{i2}}$ inventory of manufacturer i at $t \in [t_{m_{i}}, T_{m_{i}}]$, i=1, 2
$AP_{m_{i}}$ expected average profit of manufacturer i, i=1, 2
$AP_{r}$ expected average profit of the retailer
$t_{m_{i}}$ time required for maximum inventory of manufacturer i, i=1, 2
$T_{m_{i}}$ cycle time of manufacturer i, i=1, 2
$R_{i}^{a}$ lower limit of reservation price of manufacturer i, i=1, 2
$R_{i}^{b}$ upper limit of reservation price of manufacturer i, i=1, 2
Decision variables
$Q$ order quantity (units)
$P_{i}$ selling-price of product j, j=1, 2 ($/unit)
$P_{r}$ selling-price of the bundle product ($/unit)
Random variables
$D_{m_{i}}$ demand for product j, j=1, 2 (units)
$D_{r}$ demand for the bundle product (units)
Parameters
$C_{i}$ manufacturing cost of product j, j=1, 2 ($/unit)
$h_{m_{i}}$ holding cost of product j per unit per unit time, j=1, 2 ($/unit/unit time)
$h_{r}$ holding cost of the bundle product per unit per unit time ($/unit/unit time)
$S_{m_{i}}$ setup cost per setup of product j, j=1, 2 ($/unit)
$K_{m_{i}}$ production rate of product j, j=1, 2 (units)
$M$ known market size (units)
$A$ ordering cost per order of the retailer ($/order)
$I_{m_{i1}}$ inventory of manufacturer i at $ t \in[0, t_{m_{i}}]$, i=1, 2
$I_{m_{i2}}$ inventory of manufacturer i at $t \in [t_{m_{i}}, T_{m_{i}}]$, i=1, 2
$AP_{m_{i}}$ expected average profit of manufacturer i, i=1, 2
$AP_{r}$ expected average profit of the retailer
$t_{m_{i}}$ time required for maximum inventory of manufacturer i, i=1, 2
$T_{m_{i}}$ cycle time of manufacturer i, i=1, 2
$R_{i}^{a}$ lower limit of reservation price of manufacturer i, i=1, 2
$R_{i}^{b}$ upper limit of reservation price of manufacturer i, i=1, 2
Table 2.  Input data
Player Market size (units) Manufacturer 1
$M=1500$
Manufacturer 2
$M=1500$
Retailer
$M=1500$
Setup cost
($/setup)
$S_{m_{1}}=20$ $S_{m_{2}}=20$ $A=1$
Holding cost
($/unit/year)
$h_{m_{1}}=0.015$ $h_{m_{2}}=0.015$ $h_r=0.01$
Production rate
(units/year)
$K_{m_{1}}=2000$ $K_{m_{2}}=2000$ -
Purchasing cost
($/unit)
$C_{1}=0.25$ $C_{2}=0.15$ -
Reservation interval [0, 1] [0.1, 0.9] [0.1, 0.9]
  -indicates that the parameter is not available for this case.
Player Market size (units) Manufacturer 1
$M=1500$
Manufacturer 2
$M=1500$
Retailer
$M=1500$
Setup cost
($/setup)
$S_{m_{1}}=20$ $S_{m_{2}}=20$ $A=1$
Holding cost
($/unit/year)
$h_{m_{1}}=0.015$ $h_{m_{2}}=0.015$ $h_r=0.01$
Production rate
(units/year)
$K_{m_{1}}=2000$ $K_{m_{2}}=2000$ -
Purchasing cost
($/unit)
$C_{1}=0.25$ $C_{2}=0.15$ -
Reservation interval [0, 1] [0.1, 0.9] [0.1, 0.9]
  -indicates that the parameter is not available for this case.
Table 3.  Optimum results of Example 1
Case $Q^*$ units $P_{1}^{*}$ $/unit $P_{2}^{*}$ $/unit $P_{r}^{*}$ $/unit $AP_{m_{1}}^{*}$ $/year $AP_{m_{2}}^{*}$ $/year $AP_{{r}}^{*}$ $/year $AP_{m_{1}r}^{*}$ $/year $AP_{m_{2}r}^{*}$ $/year
1.1 1433.14 0.63 0.53 1.33 195.39 246.92 36.37 - -
1.2 1433.14 0.63 0.44 1.29 195.39 - - - 294.18
2.1 1690.88 0.63 0.53 1.33 195.18 247.15 35.90 - -
2.2 1690.88 0.51 0.53 1.27 - 247.15 - 245.87 -
  -indicates that the average profit is not available for this case.
Case $Q^*$ units $P_{1}^{*}$ $/unit $P_{2}^{*}$ $/unit $P_{r}^{*}$ $/unit $AP_{m_{1}}^{*}$ $/year $AP_{m_{2}}^{*}$ $/year $AP_{{r}}^{*}$ $/year $AP_{m_{1}r}^{*}$ $/year $AP_{m_{2}r}^{*}$ $/year
1.1 1433.14 0.63 0.53 1.33 195.39 246.92 36.37 - -
1.2 1433.14 0.63 0.44 1.29 195.39 - - - 294.18
2.1 1690.88 0.63 0.53 1.33 195.18 247.15 35.90 - -
2.2 1690.88 0.51 0.53 1.27 - 247.15 - 245.87 -
  -indicates that the average profit is not available for this case.
Table 4.  Input data from McCardle et al. [10]
Player Market size (units) Manufacturer 1
$M=100$
Manufacturer 2
$M=100$
Retailer
$M=100$
Setup cost
($/setup)
$S_{m_{1}}=0$ $S_{m_{2}}=0$ $A=0$
Holding cost
($/unit/year)
$h_{m_{1}}=0$ $h_{m_{2}}=0$ $h_r=0$
Production rate
(units/year)
$K_{m_{1}}=0$ $K_{m_{2}}=0$ -
Purchasing cost
($/unit)
$C_{1}=0.25$ $C_{2}=0.25$ -
Reservation interval [0, 1] [0.1, 0.9] [0.1, 0.9]
  -indicates that the parameter is not available for this case.
Player Market size (units) Manufacturer 1
$M=100$
Manufacturer 2
$M=100$
Retailer
$M=100$
Setup cost
($/setup)
$S_{m_{1}}=0$ $S_{m_{2}}=0$ $A=0$
Holding cost
($/unit/year)
$h_{m_{1}}=0$ $h_{m_{2}}=0$ $h_r=0$
Production rate
(units/year)
$K_{m_{1}}=0$ $K_{m_{2}}=0$ -
Purchasing cost
($/unit)
$C_{1}=0.25$ $C_{2}=0.25$ -
Reservation interval [0, 1] [0.1, 0.9] [0.1, 0.9]
  -indicates that the parameter is not available for this case.
Table 5.  Optimum results of Example 2
Case $Q^* $ units $P_{1}^{*}$ $/unit $P_{2}^{*}$ $/unit $P_{r}^{*}$ $/unit $AP_{m_{1}}^{*}$ $/year $AP_{m_{2}}^{*}$ $/year $AP_{{r}}^{*}$ $/year $AP_{m_{1}r}^{*}$ $/year $AP_{m_{2}r}^{*}$ $/year
1.1 $300$ $0.625$ $0.625$ $1.375$ $14.0625$ $14.0625$ $1.5625$ - -
1.2 $300$ $0.625$ $0.541667$ $1.33$ $14.0625$ - - - $16.1458$
2.1 $300$ $0.625$ $0.625$ $1.375$ $14.0625$ $14.0625$ $1.5625$ - -
2.2 $300$ $0.625$ $0.541667$ $1.33333$ - $14.0625$ - 16.1458 -
  -indicates that the average profit is not available for this case.
Case $Q^* $ units $P_{1}^{*}$ $/unit $P_{2}^{*}$ $/unit $P_{r}^{*}$ $/unit $AP_{m_{1}}^{*}$ $/year $AP_{m_{2}}^{*}$ $/year $AP_{{r}}^{*}$ $/year $AP_{m_{1}r}^{*}$ $/year $AP_{m_{2}r}^{*}$ $/year
1.1 $300$ $0.625$ $0.625$ $1.375$ $14.0625$ $14.0625$ $1.5625$ - -
1.2 $300$ $0.625$ $0.541667$ $1.33$ $14.0625$ - - - $16.1458$
2.1 $300$ $0.625$ $0.625$ $1.375$ $14.0625$ $14.0625$ $1.5625$ - -
2.2 $300$ $0.625$ $0.541667$ $1.33333$ - $14.0625$ - 16.1458 -
  -indicates that the average profit is not available for this case.
Table 6.  Sensitivity analysis for Case 1.1
Parameter change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}}$
(in %)
$AP_{r}$
(in %)
$M$ -50% -52.76 -52.18 -59.85
-25% -26.38 -26.09 -29.93
+25% +26.38 +26.09 +29.93
+50% +52.75 +52.18 +59.85
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.99 $S_{m_{2}}$ -50% +1.97
-25% +0.99 -25% +0.98
+25% -0.99 +25% -0.98
+50% -1.98 +50% -1.95
$h_{m_{1}}$ -50% +2.33 $h_{m_{2}}$ -50% +1.42
-25% +1.06 -25% +1.42
+25% -0.94 +25% -0.71
+50% -1.78 +50% -1.42
$C_{1}$ -50% +38.63 $C_{2}$ -50% +22.18
-25% +18.54 -25% +10.82
+25% -17.04 +25% -10.29
+50% -32.58 +50% -20.04
Parameter change(in %) $AP_{r}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.25 $h_{r}$ -50% +9.85
-25% +0.12 -25% +4.93
+25% -0.12 +25% -4.93
+50% -0.25 +50% -9.85
Parameter change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}}$
(in %)
$AP_{r}$
(in %)
$M$ -50% -52.76 -52.18 -59.85
-25% -26.38 -26.09 -29.93
+25% +26.38 +26.09 +29.93
+50% +52.75 +52.18 +59.85
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.99 $S_{m_{2}}$ -50% +1.97
-25% +0.99 -25% +0.98
+25% -0.99 +25% -0.98
+50% -1.98 +50% -1.95
$h_{m_{1}}$ -50% +2.33 $h_{m_{2}}$ -50% +1.42
-25% +1.06 -25% +1.42
+25% -0.94 +25% -0.71
+50% -1.78 +50% -1.42
$C_{1}$ -50% +38.63 $C_{2}$ -50% +22.18
-25% +18.54 -25% +10.82
+25% -17.04 +25% -10.29
+50% -32.58 +50% -20.04
Parameter change(in %) $AP_{r}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.25 $h_{r}$ -50% +9.85
-25% +0.12 -25% +4.93
+25% -0.12 +25% -4.93
+50% -0.25 +50% -9.85
Table 7.  Sensitivity analysis for Case 1.2
Parameter change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}r}$
(in %)
$M$ -50% -52.15 -53.04
-25% -26.24 -26.52
+25% +26.49 +26.52
+50% +53.18 +53.04
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}r}$
(in %)
$S_{m_{1}}$ -50% +1.99 $S_{m_{2}}$ -50% +2.04
-25% +0.99 -25% +1.02
+25% -0.99 +25% -1.01
+50% -1.98 +50% -2.02
$h_{m_{1}}$ -50% +2.33 $h_{m_{2}}$ -50% +1.05
-25% +1.06 -25% +0.52
+25% -0.94 +25% -0.52
+50% -1.78 +50% -1.04
$C_{1}$ -50% +38.63 $C_{2}$ -50% +22.91
-25% +18.55 -25% +11.18
+25% -17.02 +25% -10.62
+50% -32.52 +50% -20.67
Parameter change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}r}$
(in %)
$M$ -50% -52.15 -53.04
-25% -26.24 -26.52
+25% +26.49 +26.52
+50% +53.18 +53.04
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}r}$
(in %)
$S_{m_{1}}$ -50% +1.99 $S_{m_{2}}$ -50% +2.04
-25% +0.99 -25% +1.02
+25% -0.99 +25% -1.01
+50% -1.98 +50% -2.02
$h_{m_{1}}$ -50% +2.33 $h_{m_{2}}$ -50% +1.05
-25% +1.06 -25% +0.52
+25% -0.94 +25% -0.52
+50% -1.78 +50% -1.04
$C_{1}$ -50% +38.63 $C_{2}$ -50% +22.91
-25% +18.55 -25% +11.18
+25% -17.02 +25% -10.62
+50% -32.52 +50% -20.67
Table 8.  Sensitivity analysis for Case 2.1
Parameters change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}}$
(in %)
$AP_{r}$
(in %)
$M$ -50% -53.25 -52.57 -61.77
-25% -26.62 -26.28 -30.89
+25% +26.62 +26.28 +30.89
+50% +53.25 +52.57 +61.77
Parameter change(in %) $AP_{r}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.21 $h_{r}$ -50% +11.77
-25% +0.11 -25% +5.89
+25% -0.11 +25% -5.89
+50% -0.21 +50% -11.77
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.70 $S_{m_{2}}$ -50% +1.96
-25% +0.85 -25% +0.90
+25% -0.84 +25% -0.79
+50% -1.69 +50% -1.50
$h_{m_{1}}$ -50% +2.34 $h_{m_{2}}$ -50% +1.96
-25% +1.17 -25% +0.90
+25% -1.17 +25% -0.79
+50% -2.34 +50% -1.50
$C_{1}$ -50% +38.76 $C_{2}$ -50% +22.27
-25% +18.63 -25% +10.86
+25% -17.13 +25% -10.32
+50% -32.76 +50% -20.09
Parameters change(in %) $AP_{m_{1}}$
(in %)
$AP_{m_{2}}$
(in %)
$AP_{r}$
(in %)
$M$ -50% -53.25 -52.57 -61.77
-25% -26.62 -26.28 -30.89
+25% +26.62 +26.28 +30.89
+50% +53.25 +52.57 +61.77
Parameter change(in %) $AP_{r}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.21 $h_{r}$ -50% +11.77
-25% +0.11 -25% +5.89
+25% -0.11 +25% -5.89
+50% -0.21 +50% -11.77
Parameter change(in %) $AP_{m_{1}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.70 $S_{m_{2}}$ -50% +1.96
-25% +0.85 -25% +0.90
+25% -0.84 +25% -0.79
+50% -1.69 +50% -1.50
$h_{m_{1}}$ -50% +2.34 $h_{m_{2}}$ -50% +1.96
-25% +1.17 -25% +0.90
+25% -1.17 +25% -0.79
+50% -2.34 +50% -1.50
$C_{1}$ -50% +38.76 $C_{2}$ -50% +22.27
-25% +18.63 -25% +10.86
+25% -17.13 +25% -10.32
+50% -32.76 +50% -20.09
Table 9.  Sensitivity analysis for Case 2.2
Parameter change(in %) $AP_{m_{2}}$
(in %)
$AP_{m_{1}r}$
(in %)
$M$ -50% -52.57 -54.30
-25% -26.28 -27.15
+25% +26.28 +27.15
+50% +52.57 +54.30
Parameter change(in %) $AP_{m_{1r}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.76 $S_{m_{2}}$ -50% +1.96
-25% +0.88 -25% +0.90
+25% -0.88 +25% -0.79
+50% -1.75 +50% -1.50
$h_{m_{1}}$ -50% +1.64 $h_{m_{2}}$ -50% +1.96
-25% +0.82 -25% +0.90
+25% -0.82 +25% -0.79
+50% -1.64 +50% -1.50
$C_{1}$ -50% +40.31 $C_{2}$ -50% +22.27
-25% +19.36 -25% +10.86
+25% -17.77 +25% -10.32
+50% -33.95 +50% -20.09
Parameter change(in %) $AP_{m_{1r}}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.04 $h_{r}$ -50% +1.72
-25% +0.02 -25% +0.86
+25% -0.02 +25% -0.86
+50% -0.04 +50% -1.72
Parameter change(in %) $AP_{m_{2}}$
(in %)
$AP_{m_{1}r}$
(in %)
$M$ -50% -52.57 -54.30
-25% -26.28 -27.15
+25% +26.28 +27.15
+50% +52.57 +54.30
Parameter change(in %) $AP_{m_{1r}}$
(in %)
Parameter change(in %) $AP_{m_{2}}$
(in %)
$S_{m_{1}}$ -50% +1.76 $S_{m_{2}}$ -50% +1.96
-25% +0.88 -25% +0.90
+25% -0.88 +25% -0.79
+50% -1.75 +50% -1.50
$h_{m_{1}}$ -50% +1.64 $h_{m_{2}}$ -50% +1.96
-25% +0.82 -25% +0.90
+25% -0.82 +25% -0.79
+50% -1.64 +50% -1.50
$C_{1}$ -50% +40.31 $C_{2}$ -50% +22.27
-25% +19.36 -25% +10.86
+25% -17.77 +25% -10.32
+50% -33.95 +50% -20.09
Parameter change(in %) $AP_{m_{1r}}$
(in %)
Parameter change(in %) $AP_{r}$
(in %)
$A$ -50% +0.04 $h_{r}$ -50% +1.72
-25% +0.02 -25% +0.86
+25% -0.02 +25% -0.86
+50% -0.04 +50% -1.72
[1]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[2]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[3]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[4]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[7]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[8]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[9]

Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

[10]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[11]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[12]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021006

[13]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[14]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[15]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[16]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[17]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[18]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[19]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[20]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (230)
  • HTML views (609)
  • Cited by (7)

Other articles
by authors

[Back to Top]