[1]
|
H. H. Bauschke and P. L. Combettes,
Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011.
doi: 10.1007/978-1-4419-9467-7.
|
[2]
|
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Program., 63 (1994), 123-145.
|
[3]
|
L. C. Ceng, N. Hadjisavvas and N. C. Wong, Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems, J. Glob. Optim., 46 (2010), 635-646.
doi: 10.1007/s10898-009-9454-7.
|
[4]
|
L. C. Ceng and J. C. Yao, An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput., 190 (2007), 205-215.
doi: 10.1016/j.amc.2007.01.021.
|
[5]
|
Y. Censor, A. Gibali and S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148 (2011), 318-335.
doi: 10.1007/s10957-010-9757-3.
|
[6]
|
Y. Censor, A. Gibali and S. Reich, Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26 (2011), 827-845.
doi: 10.1080/10556788.2010.551536.
|
[7]
|
P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal, 6 (2005), 117-136.
|
[8]
|
P. Daniele, F. Giannessi and A. Maugeri,
Equilibrium Problems and Variational Models, Kluwer, 2003.
doi: 10.1007/978-1-4613-0239-1.
|
[9]
|
K. Fan, A minimax inequality and applications, In: Shisha, O. (ed. ) Inequality, Ⅲ [Academic Press, New York, 1972], 103-113.
|
[10]
|
K. Goebel and S. Reich,
Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
doi: MR744194.
|
[11]
|
K. Goebel and W. A. Kirk,
Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Math., vol. 28 and Cambridge University Press, Cambridge, 1990.
doi: 10.1017/CBO9780511526152.
|
[12]
|
D. V. Hieu, P. K. Anh and L. D. Muu, Modified hybrid projection methods for finding common solutions to variational inequality problems, Comput. Optim. Appl., (2016), 1-22.
doi: 10.1007/s10589-016-9857-6.
|
[13]
|
D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc., 52 (2015), 373-388.
doi: 10.4134/JKMS.2015.52.2.373.
|
[14]
|
D. V. Hieu, Parallel extragradient-proximal methods for split equilibrium problems, Math. Model. Anal., 21 (2016), 478-501.
doi: 10.3846/13926292.2016.1183527.
|
[15]
|
D. V. Hieu, L. D. Muu and P. K. Anh, Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algor., 73 (2016), 197-217.
doi: 10.1007/s11075-015-0092-5.
|
[16]
|
D. V. Hieu, Parallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappings, J. Appl. Math. Comput., 73 (2016), 1-24.
doi: 10.1007/s12190-015-0980-9.
|
[17]
|
H. Iiduka, Acceleration method for convex optimization over the fixed point set of a nonexpansive mapping, Math. Program. Ser. A, 149 (2015), 131-165.
doi: 10.1007/s10107-013-0741-1.
|
[18]
|
I. V. Konnov,
Combined Relaxation Methods for Variational Inequalities, Springer, Berlin, 2001.
doi: 10.1007/978-3-642-56886-2.
|
[19]
|
G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomika i Matematicheskie Metody, 12 (1976), 747-756.
|
[20]
|
S. I. Lyashko, V. V. Semenov and T. A. Voitova, Low-cost modification of Korpelevich's methods for monotone equilibrium problems, Cybernetics and Systems Analysis, 47 (2011), 631-639.
doi: 10.1007/s10559-011-9343-1.
|
[21]
|
Y. V. Malitsky and V. V. Semenov, A hybrid method without extrapolation step for solving variational inequality problems, J. Glob. Optim., 61 (2015), 193-202.
doi: 10.1007/s10898-014-0150-x.
|
[22]
|
B. Martinet, R$\rm\acute{e}$gularisation d$\rm\acute{i}$n$\rm\acute{e}$quations variationelles par approximations successives, Rev. Fr. Autom. Inform. Rech. Op$\rm\acute{e}$r., Anal. Num$\acute{e}$r., 4 (1970), 154-158.
|
[23]
|
G. Mastroeni, On auxiliary principle for equilibrium problems, Chapter: Equilibrium Problems and Variational Models, 68 (2003), 289-298.
doi: 10.1007/978-1-4613-0239-1_15.
|
[24]
|
B. Mordukhovich, B. Panicucci, M. Pappalardo and M. Passacantando, Hybrid proximal methods for equilibrium problems, Optim. Lett., 6 (2012), 1535-1550.
doi: 10.1007/s11590-011-0348-5.
|
[25]
|
L. D. Muu and W. Oettli, Convergence of an adative penalty scheme for finding constrained equilibria, Nonlinear Anal. TMA, 18 (1992), 1159-1166.
doi: 10.1016/0362-546X(92)90159-C.
|
[26]
|
N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim, 16 (2006), 1230-1241.
doi: 10.1137/050624315.
|
[27]
|
T. T. V. Nguyen, J. J. Strodiot and V. H. Nguyen, Hybrid methods for solving simultaneously an equilibrium problem and countably many fixed point problems in a Hilbert space, J. Optim. Theory Appl., 160 (2014), 809-831.
doi: 10.1007/s10957-013-0400-y.
|
[28]
|
T. P. D. Nguyen, J. J. Strodiot, V. H. Nguyen and T. T. V. Nguyen, A family of extragradient methods for solving equilibrium problems, J. Ind. Manag. Optim., 11 (2015), 619-630.
doi: 10.3934/jimo.2015.11.619.
|
[29]
|
T. D. Quoc, L. D. Muu and N. V. Hien, Extragradient algorithms extended to equilibrium problems, Optimization, 57 (2008), 749-776.
doi: 10.1080/02331930601122876.
|
[30]
|
T. D. Quoc, P. N. Anh and L. D. Muu, Dual extragradient algorithms extended to equilibrium problems, J. Glob. Optim., 52 (2012), 139-159.
doi: 10.1007/s10898-011-9693-2.
|
[31]
|
R. T. Rockafellar,
Convex Analysis, Princeton, NJ: Princeton University Press, 1970.
doi: MR0274683.
|
[32]
|
J. J. Strodiot, T. T. V. Nguyen and V. H. Nguyen, A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems, J. Glob. Optim., 56 (2013), 373-397.
doi: 10.1007/s10898-011-9814-y.
|
[33]
|
P. T. Vuong, J. J. Strodiot and V. H. Nguyen, Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems, J. Optim. Theory Appl., 155 (2012), 605-627.
doi: 10.1007/s10957-012-0085-7.
|
[34]
|
I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, In: Butnariu, D., Censor, Y., Reich, S. (eds. ) Inherently Parallel Algorithms for Feasibility and Optimization and Their Applications, Elsevier, Amsterdam, 8 (2001), 473-504.
doi: 10.1016/S1570-579X(01)80028-8.
|