[1]
|
A. Almendral and C. W. Oosterlee, Numerical valuation of options with jumps in the underlying, Appl. Math. Comput., 53 (2005), 1-18.
doi: 10.1016/j.apnum.2004.08.037.
|
[2]
|
A. Anderson and J. Andresen, Jump diffusion process: volatility smile fitting and numerical methods for option pricing, Rev. Derivat. Res., 4 (2000), 231-262.
|
[3]
|
J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.
doi: 10.1016/j.camwa.2008.02.005.
|
[4]
|
C. G. Averbuj, Nonlinear differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach, R. Bras. Eco. de Emp., 12 (2012), 81-90.
|
[5]
|
G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in: L. C. G. Rogers, D. Talay (Eds), Numerical Methods in Finance, Cambridge
University Press, Cambridge, (1997), 1-21.
|
[6]
|
F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062.
|
[7]
|
W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.
doi: 10.1016/j.camwa.2013.10.007.
|
[8]
|
W. Chen and S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial and Management Optimization, 11 (2015), 241-264.
doi: 10.3934/jimo.2015.11.241.
|
[9]
|
R. Company, L. Jodar and J. R. Pintos, A numerical method for European option pricing with transaction costs nonlinear equation, Mathematics and Computer Modelling, 50 (2009), 910-920.
doi: 10.1016/j.mcm.2009.05.019.
|
[10]
|
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Boca Raton, FL, 2004.
|
[11]
|
R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential lěvy models, SIAM J. Numer. Anal., 43 (2005), 1596-1626.
doi: 10.1137/S0036142903436186.
|
[12]
|
B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.
|
[13]
|
B. D. üring, M. Fournier and A. J. üngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, International Journal of Theoretical and Applied Finance, 6 (2003), 767-789.
|
[14]
|
Y. d'Halluin, P. A. Forsyth and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.
doi: 10.1093/imanum/drh011.
|
[15]
|
P. Heider, Numerical methods for nonlinear Black-Scholes equations, Applied Mathematical Finance, 17 (2010), 59-81.
doi: 10.1080/13504860903075670.
|
[16]
|
S. L. Heston, A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financial Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[17]
|
C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009.
|
[18]
|
C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis TMA, 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061.
|
[19]
|
C. S. Huang, C. H. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.
doi: 10.1007/s00607-006-0164-4.
|
[20]
|
J. Hull, Options, Futures, and Other Derivatives, Prentice-Hall, Englewood Cliffs, 2005.
|
[21]
|
J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x.
|
[22]
|
H. E. Leland, Option pricing and replication with transaction costs, Journal of Finance, 40 (1985), 1283-1301.
|
[23]
|
D.C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation, Applied Mathematics and Computation, 219 (2013), 8818-8828.
doi: 10.1016/j.amc.2012.12.077.
|
[24]
|
D. C. Lesmana and S. Wang, Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics and Computation, 251 (2015), 318-330.
doi: 10.1016/j.amc.2014.11.060.
|
[25]
|
W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, Journal of Industrial and Management Optimization, 9 (2013), 365-389.
doi: 10.3934/jimo.2013.9.365.
|
[26]
|
C. Van Loan,
Computational Frameworks for the Fast Fourier Transform, Frontier in applied mathematics, Vol. 10.SIAM, Philadelphia, PA, 1992.
doi: 10.1137/1.9781611970999.
|
[27]
|
R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2.
|
[28]
|
A. Mocioalca, Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 52 (2007), 349-366.
|
[29]
|
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.
|
[30]
|
S. Wang, A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811.
doi: 10.1007/s11590-013-0651-4.
|
[31]
|
S. Wang, A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790.
doi: 10.1007/s10898-014-0262-3.
|
[32]
|
S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006.
|
[33]
|
S. Wang and X. Q. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236.
|
[34]
|
S. Wang, X. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3.
|
[35]
|
S. Wang, S. Zhang and Z. Fang, A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.
doi: 10.1002/num.21941.
|
[36]
|
Y.-P. Wang and S.-L. Tao, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.
doi: 10.1016/j.amc.2011.10.028.
|
[37]
|
P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.
|
[38]
|
D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, 1971.
|
[39]
|
K. Zhang and S. Wang, Pricing options under jump diffusion processes with fitted finite volume method, Applied Mathematics & Computation, 201 (2008), 398-413.
doi: 10.1016/j.amc.2007.12.043.
|
[40]
|
K. Zhang and S. Wang, A computational scheme for options under jump diffusion processes, International Journals of Numerical Analysis and Modeling, 6 (2009), 110-123.
|
[41]
|
K. Zhang and S. Wang, Pricing American bond options using a penalty method, Automatica, 48 (2012), 472-479.
doi: 10.1016/j.automatica.2012.01.009.
|
[42]
|
X. L. Zhang, Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res., 22 (1997), 668-690.
doi: 10.1287/moor.22.3.668.
|
[43]
|
Y. Y. Zhou, S. Wang and X. Q. Yang, A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, 60 (2014), 531-550.
doi: 10.1007/s10898-013-0122-6.
|