October  2017, 13(4): 1793-1813. doi: 10.3934/jimo.2017019

A numerical scheme for pricing American options with transaction costs under a jump diffusion process

1. 

Department of Mathematics, Bogor Agricultural University, Kampus IPB Darmaga, Bogor, Jawa Barat 16680, Indonesia

2. 

Department of of Mathematics & Statistics, Curtin University, GPO Box U1987, WA 6845, Australia

Received  April 2016 Revised  July 2016 Published  December 2016

In this paper we develop a numerical method for a nonlinear partial integro-differential complementarity problem arising from pricing American options with transaction costs when the underlying assets follow a jump diffusion process. We first approximate the complementarity problem by a nonlinear partial integro-differential equation (PIDE) using a penalty approach. The PIDE is then discretized by a combination of a spatial upwind finite differencing and a fully implicit time stepping scheme. We prove that the coefficient matrix of the system from this scheme is an M-matrix and that the approximate solution converges to the viscosity solution to the PIDE by showing that the scheme is consistent, monotone, and unconditionally stable. We also propose a Newton's iterative method coupled with a Fast Fourier Transform for the computation of the discretized integral term for solving the fully discretized system. Numerical results will be presented to demonstrate the convergence rates and usefulness of this method.

Citation: Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019
References:
[1]

A. Almendral and C. W. Oosterlee, Numerical valuation of options with jumps in the underlying, Appl. Math. Comput., 53 (2005), 1-18.  doi: 10.1016/j.apnum.2004.08.037.  Google Scholar

[2]

A. Anderson and J. Andresen, Jump diffusion process: volatility smile fitting and numerical methods for option pricing, Rev. Derivat. Res., 4 (2000), 231-262.   Google Scholar

[3]

J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.  doi: 10.1016/j.camwa.2008.02.005.  Google Scholar

[4]

C. G. Averbuj, Nonlinear differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach, R. Bras. Eco. de Emp., 12 (2012), 81-90.   Google Scholar

[5]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in: L. C. G. Rogers, D. Talay (Eds), Numerical Methods in Finance, Cambridge University Press, Cambridge, (1997), 1-21.  Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[8]

W. Chen and S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial and Management Optimization, 11 (2015), 241-264.  doi: 10.3934/jimo.2015.11.241.  Google Scholar

[9]

R. CompanyL. Jodar and J. R. Pintos, A numerical method for European option pricing with transaction costs nonlinear equation, Mathematics and Computer Modelling, 50 (2009), 910-920.  doi: 10.1016/j.mcm.2009.05.019.  Google Scholar

[10] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Boca Raton, FL, 2004.   Google Scholar
[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential lěvy models, SIAM J. Numer. Anal., 43 (2005), 1596-1626.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[13]

B. D. üringM. Fournier and A. J. üngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, International Journal of Theoretical and Applied Finance, 6 (2003), 767-789.   Google Scholar

[14]

Y. d'HalluinP. A. Forsyth and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.  doi: 10.1093/imanum/drh011.  Google Scholar

[15]

P. Heider, Numerical methods for nonlinear Black-Scholes equations, Applied Mathematical Finance, 17 (2010), 59-81.  doi: 10.1080/13504860903075670.  Google Scholar

[16]

S. L. Heston, A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financial Stud., 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[17]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[18]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis TMA, 75 (2012), 588-597.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[19]

C. S. HuangC. H. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.  doi: 10.1007/s00607-006-0164-4.  Google Scholar

[20] J. Hull, Options, Futures, and Other Derivatives, Prentice-Hall, Englewood Cliffs, 2005.   Google Scholar
[21]

J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281-300.  doi: 10.1111/j.1540-6261.1987.tb02568.x.  Google Scholar

[22]

H. E. Leland, Option pricing and replication with transaction costs, Journal of Finance, 40 (1985), 1283-1301.   Google Scholar

[23]

D.C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation, Applied Mathematics and Computation, 219 (2013), 8818-8828.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[24]

D. C. Lesmana and S. Wang, Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics and Computation, 251 (2015), 318-330.  doi: 10.1016/j.amc.2014.11.060.  Google Scholar

[25]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, Journal of Industrial and Management Optimization, 9 (2013), 365-389.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[26]

C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Frontier in applied mathematics, Vol. 10.SIAM, Philadelphia, PA, 1992. doi: 10.1137/1.9781611970999.  Google Scholar

[27]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[28]

A. Mocioalca, Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 52 (2007), 349-366.   Google Scholar

[29] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.   Google Scholar
[30]

S. Wang, A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811.  doi: 10.1007/s11590-013-0651-4.  Google Scholar

[31]

S. Wang, A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790.  doi: 10.1007/s10898-014-0262-3.  Google Scholar

[32]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[33]

S. Wang and X. Q. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.  doi: 10.1080/02331934.2014.967236.  Google Scholar

[34]

S. WangX. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[35]

S. WangS. Zhang and Z. Fang, A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.  doi: 10.1002/num.21941.  Google Scholar

[36]

Y.-P. Wang and S.-L. Tao, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.  doi: 10.1016/j.amc.2011.10.028.  Google Scholar

[37] P. WilmottJ. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.   Google Scholar
[38] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, 1971.   Google Scholar
[39]

K. Zhang and S. Wang, Pricing options under jump diffusion processes with fitted finite volume method, Applied Mathematics & Computation, 201 (2008), 398-413.  doi: 10.1016/j.amc.2007.12.043.  Google Scholar

[40]

K. Zhang and S. Wang, A computational scheme for options under jump diffusion processes, International Journals of Numerical Analysis and Modeling, 6 (2009), 110-123.   Google Scholar

[41]

K. Zhang and S. Wang, Pricing American bond options using a penalty method, Automatica, 48 (2012), 472-479.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[42]

X. L. Zhang, Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res., 22 (1997), 668-690.  doi: 10.1287/moor.22.3.668.  Google Scholar

[43]

Y. Y. ZhouS. Wang and X. Q. Yang, A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, 60 (2014), 531-550.  doi: 10.1007/s10898-013-0122-6.  Google Scholar

show all references

References:
[1]

A. Almendral and C. W. Oosterlee, Numerical valuation of options with jumps in the underlying, Appl. Math. Comput., 53 (2005), 1-18.  doi: 10.1016/j.apnum.2004.08.037.  Google Scholar

[2]

A. Anderson and J. Andresen, Jump diffusion process: volatility smile fitting and numerical methods for option pricing, Rev. Derivat. Res., 4 (2000), 231-262.   Google Scholar

[3]

J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.  doi: 10.1016/j.camwa.2008.02.005.  Google Scholar

[4]

C. G. Averbuj, Nonlinear differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach, R. Bras. Eco. de Emp., 12 (2012), 81-90.   Google Scholar

[5]

G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in: L. C. G. Rogers, D. Talay (Eds), Numerical Methods in Finance, Cambridge University Press, Cambridge, (1997), 1-21.  Google Scholar

[6]

F. Black and M. Scholes, The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[7]

W. Chen and S. Wang, A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.  doi: 10.1016/j.camwa.2013.10.007.  Google Scholar

[8]

W. Chen and S. Wang, A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial and Management Optimization, 11 (2015), 241-264.  doi: 10.3934/jimo.2015.11.241.  Google Scholar

[9]

R. CompanyL. Jodar and J. R. Pintos, A numerical method for European option pricing with transaction costs nonlinear equation, Mathematics and Computer Modelling, 50 (2009), 910-920.  doi: 10.1016/j.mcm.2009.05.019.  Google Scholar

[10] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Boca Raton, FL, 2004.   Google Scholar
[11]

R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential lěvy models, SIAM J. Numer. Anal., 43 (2005), 1596-1626.  doi: 10.1137/S0036142903436186.  Google Scholar

[12]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[13]

B. D. üringM. Fournier and A. J. üngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, International Journal of Theoretical and Applied Finance, 6 (2003), 767-789.   Google Scholar

[14]

Y. d'HalluinP. A. Forsyth and K. R. Vetzal, Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.  doi: 10.1093/imanum/drh011.  Google Scholar

[15]

P. Heider, Numerical methods for nonlinear Black-Scholes equations, Applied Mathematical Finance, 17 (2010), 59-81.  doi: 10.1080/13504860903075670.  Google Scholar

[16]

S. L. Heston, A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financial Stud., 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[17]

C. Huang and S. Wang, A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.  doi: 10.1016/j.orl.2009.09.009.  Google Scholar

[18]

C. Huang and S. Wang, A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis TMA, 75 (2012), 588-597.  doi: 10.1016/j.na.2011.08.061.  Google Scholar

[19]

C. S. HuangC. H. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.  doi: 10.1007/s00607-006-0164-4.  Google Scholar

[20] J. Hull, Options, Futures, and Other Derivatives, Prentice-Hall, Englewood Cliffs, 2005.   Google Scholar
[21]

J. Hull and A. White, The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281-300.  doi: 10.1111/j.1540-6261.1987.tb02568.x.  Google Scholar

[22]

H. E. Leland, Option pricing and replication with transaction costs, Journal of Finance, 40 (1985), 1283-1301.   Google Scholar

[23]

D.C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation, Applied Mathematics and Computation, 219 (2013), 8818-8828.  doi: 10.1016/j.amc.2012.12.077.  Google Scholar

[24]

D. C. Lesmana and S. Wang, Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics and Computation, 251 (2015), 318-330.  doi: 10.1016/j.amc.2014.11.060.  Google Scholar

[25]

W. Li and S. Wang, Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, Journal of Industrial and Management Optimization, 9 (2013), 365-389.  doi: 10.3934/jimo.2013.9.365.  Google Scholar

[26]

C. Van Loan, Computational Frameworks for the Fast Fourier Transform, Frontier in applied mathematics, Vol. 10.SIAM, Philadelphia, PA, 1992. doi: 10.1137/1.9781611970999.  Google Scholar

[27]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[28]

A. Mocioalca, Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 52 (2007), 349-366.   Google Scholar

[29] R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.   Google Scholar
[30]

S. Wang, A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811.  doi: 10.1007/s11590-013-0651-4.  Google Scholar

[31]

S. Wang, A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790.  doi: 10.1007/s10898-014-0262-3.  Google Scholar

[32]

S. Wang and X. Q. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.  doi: 10.1016/j.orl.2007.06.006.  Google Scholar

[33]

S. Wang and X. Q. Yang, A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.  doi: 10.1080/02331934.2014.967236.  Google Scholar

[34]

S. WangX. Q. Yang and K. L. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254.  doi: 10.1007/s10957-006-9062-3.  Google Scholar

[35]

S. WangS. Zhang and Z. Fang, A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.  doi: 10.1002/num.21941.  Google Scholar

[36]

Y.-P. Wang and S.-L. Tao, Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.  doi: 10.1016/j.amc.2011.10.028.  Google Scholar

[37] P. WilmottJ. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993.   Google Scholar
[38] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, 1971.   Google Scholar
[39]

K. Zhang and S. Wang, Pricing options under jump diffusion processes with fitted finite volume method, Applied Mathematics & Computation, 201 (2008), 398-413.  doi: 10.1016/j.amc.2007.12.043.  Google Scholar

[40]

K. Zhang and S. Wang, A computational scheme for options under jump diffusion processes, International Journals of Numerical Analysis and Modeling, 6 (2009), 110-123.   Google Scholar

[41]

K. Zhang and S. Wang, Pricing American bond options using a penalty method, Automatica, 48 (2012), 472-479.  doi: 10.1016/j.automatica.2012.01.009.  Google Scholar

[42]

X. L. Zhang, Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res., 22 (1997), 668-690.  doi: 10.1287/moor.22.3.668.  Google Scholar

[43]

Y. Y. ZhouS. Wang and X. Q. Yang, A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, 60 (2014), 531-550.  doi: 10.1007/s10898-013-0122-6.  Google Scholar

Figure 6.1.  Prices of the European call and put options with $a=0.01$ and $b=0.07$
Figure 6.2.  Prices of the European call and put option for different values of the transaction cost parameter
Figure 6.3.  Computed American and European put option prices
Figure 6.4.  Computed American put option prices for different values of the transaction cost parameter
Table 6.1.  Computed rates of convergence for the call option with $a = 0.01$ and $b=0.07$
$M$ $N$ $\|\cdot\|_{h,2}$Ratio$(\|\cdot\|_{h,2})$
21110.215680
41210.1165431.85
81410.0615501.89
161810.0319861.92
3211610.0162281.97
6413210.0078612.06
12816410.0034572.27
256112810.0011702.96
$M$ $N$ $\|\cdot\|_{h,2}$Ratio$(\|\cdot\|_{h,2})$
21110.215680
41210.1165431.85
81410.0615501.89
161810.0319861.92
3211610.0162281.97
6413210.0078612.06
12816410.0034572.27
256112810.0011702.96
Table 6.2.  Computed rates of convergence for the put option with $a = 0.01$ and $b=0.07$
$M$ $N$ $\|\cdot\|_{h,2}$Ratio$(\|\cdot\|_{h,2})$
21110.454596
41210.4388841.04
81410.3905471.12
161810.3279341.19
3211610.2593191.26
6413210.1894781.37
12816410.1217031.56
256112810.0581682.09
$M$ $N$ $\|\cdot\|_{h,2}$Ratio$(\|\cdot\|_{h,2})$
21110.454596
41210.4388841.04
81410.3905471.12
161810.3279341.19
3211610.2593191.26
6413210.1894781.37
12816410.1217031.56
256112810.0581682.09
[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[3]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[4]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[7]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[8]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[9]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[10]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[13]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[16]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[18]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (150)
  • HTML views (537)
  • Cited by (1)

Other articles
by authors

[Back to Top]