
-
Previous Article
An uncertain wage contract model for risk-averse worker under bilateral moral hazard
- JIMO Home
- This Issue
-
Next Article
Minimizing expected time to reach a given capital level before ruin
A numerical scheme for pricing American options with transaction costs under a jump diffusion process
1. | Department of Mathematics, Bogor Agricultural University, Kampus IPB Darmaga, Bogor, Jawa Barat 16680, Indonesia |
2. | Department of of Mathematics & Statistics, Curtin University, GPO Box U1987, WA 6845, Australia |
In this paper we develop a numerical method for a nonlinear partial integro-differential complementarity problem arising from pricing American options with transaction costs when the underlying assets follow a jump diffusion process. We first approximate the complementarity problem by a nonlinear partial integro-differential equation (PIDE) using a penalty approach. The PIDE is then discretized by a combination of a spatial upwind finite differencing and a fully implicit time stepping scheme. We prove that the coefficient matrix of the system from this scheme is an M-matrix and that the approximate solution converges to the viscosity solution to the PIDE by showing that the scheme is consistent, monotone, and unconditionally stable. We also propose a Newton's iterative method coupled with a Fast Fourier Transform for the computation of the discretized integral term for solving the fully discretized system. Numerical results will be presented to demonstrate the convergence rates and usefulness of this method.
References:
[1] |
A. Almendral and C. W. Oosterlee,
Numerical valuation of options with jumps in the underlying, Appl. Math. Comput., 53 (2005), 1-18.
doi: 10.1016/j.apnum.2004.08.037. |
[2] |
A. Anderson and J. Andresen, Jump diffusion process: volatility smile fitting and numerical methods for option pricing, Rev. Derivat. Res., 4 (2000), 231-262. Google Scholar |
[3] |
J. Ankudinova and M. Ehrhardt,
On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.
doi: 10.1016/j.camwa.2008.02.005. |
[4] |
C. G. Averbuj, Nonlinear differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach, R. Bras. Eco. de Emp., 12 (2012), 81-90. Google Scholar |
[5] |
G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in: L. C. G. Rogers, D. Talay (Eds), Numerical Methods in Finance, Cambridge
University Press, Cambridge, (1997), 1-21. |
[6] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[7] |
W. Chen and S. Wang,
A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.
doi: 10.1016/j.camwa.2013.10.007. |
[8] |
W. Chen and S. Wang,
A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial and Management Optimization, 11 (2015), 241-264.
doi: 10.3934/jimo.2015.11.241. |
[9] |
R. Company, L. Jodar and J. R. Pintos,
A numerical method for European option pricing with transaction costs nonlinear equation, Mathematics and Computer Modelling, 50 (2009), 910-920.
doi: 10.1016/j.mcm.2009.05.019. |
[10] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Boca Raton, FL, 2004.
![]() |
[11] |
R. Cont and E. Voltchkova,
A finite difference scheme for option pricing in jump diffusion and exponential lěvy models, SIAM J. Numer. Anal., 43 (2005), 1596-1626.
doi: 10.1137/S0036142903436186. |
[12] |
B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20. Google Scholar |
[13] |
B. D. üring, M. Fournier and A. J. üngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, International Journal of Theoretical and Applied Finance, 6 (2003), 767-789. Google Scholar |
[14] |
Y. d'Halluin, P. A. Forsyth and K. R. Vetzal,
Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.
doi: 10.1093/imanum/drh011. |
[15] |
P. Heider,
Numerical methods for nonlinear Black-Scholes equations, Applied Mathematical Finance, 17 (2010), 59-81.
doi: 10.1080/13504860903075670. |
[16] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financial Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[17] |
C. Huang and S. Wang,
A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009. |
[18] |
C. Huang and S. Wang,
A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis TMA, 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061. |
[19] |
C. S. Huang, C. H. Hung and S. Wang,
A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.
doi: 10.1007/s00607-006-0164-4. |
[20] | J. Hull, Options, Futures, and Other Derivatives, Prentice-Hall, Englewood Cliffs, 2005. Google Scholar |
[21] |
J. Hull and A. White,
The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x. |
[22] |
H. E. Leland, Option pricing and replication with transaction costs, Journal of Finance, 40 (1985), 1283-1301. Google Scholar |
[23] |
D.C. Lesmana and S. Wang,
An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation, Applied Mathematics and Computation, 219 (2013), 8818-8828.
doi: 10.1016/j.amc.2012.12.077. |
[24] |
D. C. Lesmana and S. Wang,
Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics and Computation, 251 (2015), 318-330.
doi: 10.1016/j.amc.2014.11.060. |
[25] |
W. Li and S. Wang,
Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, Journal of Industrial and Management Optimization, 9 (2013), 365-389.
doi: 10.3934/jimo.2013.9.365. |
[26] |
C. Van Loan,
Computational Frameworks for the Fast Fourier Transform, Frontier in applied mathematics, Vol. 10.SIAM, Philadelphia, PA, 1992.
doi: 10.1137/1.9781611970999. |
[27] |
R. C. Merton,
Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[28] |
A. Mocioalca,
Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 52 (2007), 349-366.
|
[29] |
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.
![]() |
[30] |
S. Wang,
A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811.
doi: 10.1007/s11590-013-0651-4. |
[31] |
S. Wang,
A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790.
doi: 10.1007/s10898-014-0262-3. |
[32] |
S. Wang and X. Q. Yang,
A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006. |
[33] |
S. Wang and X. Q. Yang,
A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236. |
[34] |
S. Wang, X. Q. Yang and K. L. Teo,
Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3. |
[35] |
S. Wang, S. Zhang and Z. Fang,
A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.
doi: 10.1002/num.21941. |
[36] |
Y.-P. Wang and S.-L. Tao,
Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.
doi: 10.1016/j.amc.2011.10.028. |
[37] | P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. Google Scholar |
[38] |
D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, 1971.
![]() |
[39] |
K. Zhang and S. Wang,
Pricing options under jump diffusion processes with fitted finite volume method, Applied Mathematics & Computation, 201 (2008), 398-413.
doi: 10.1016/j.amc.2007.12.043. |
[40] |
K. Zhang and S. Wang,
A computational scheme for options under jump diffusion processes, International Journals of Numerical Analysis and Modeling, 6 (2009), 110-123.
|
[41] |
K. Zhang and S. Wang,
Pricing American bond options using a penalty method, Automatica, 48 (2012), 472-479.
doi: 10.1016/j.automatica.2012.01.009. |
[42] |
X. L. Zhang,
Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res., 22 (1997), 668-690.
doi: 10.1287/moor.22.3.668. |
[43] |
Y. Y. Zhou, S. Wang and X. Q. Yang,
A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, 60 (2014), 531-550.
doi: 10.1007/s10898-013-0122-6. |
show all references
References:
[1] |
A. Almendral and C. W. Oosterlee,
Numerical valuation of options with jumps in the underlying, Appl. Math. Comput., 53 (2005), 1-18.
doi: 10.1016/j.apnum.2004.08.037. |
[2] |
A. Anderson and J. Andresen, Jump diffusion process: volatility smile fitting and numerical methods for option pricing, Rev. Derivat. Res., 4 (2000), 231-262. Google Scholar |
[3] |
J. Ankudinova and M. Ehrhardt,
On the numerical solution of nonlinear Black-Scholes equations, Computers and Mathematics with Applications, 56 (2008), 799-812.
doi: 10.1016/j.camwa.2008.02.005. |
[4] |
C. G. Averbuj, Nonlinear differential evolution equation arising in option pricing when including transaction costs: a viscosity solution approach, R. Bras. Eco. de Emp., 12 (2012), 81-90. Google Scholar |
[5] |
G. Barles, Convergence of numerical schemes for degenerate parabolic equations arising in finance theory, in: L. C. G. Rogers, D. Talay (Eds), Numerical Methods in Finance, Cambridge
University Press, Cambridge, (1997), 1-21. |
[6] |
F. Black and M. Scholes,
The pricing of options and corporate liabilities, The Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062. |
[7] |
W. Chen and S. Wang,
A penalty method for a fractional order parabolic variational inequality governing American put option valuation, Computers & Mathematics with Applications, 67 (2014), 77-90.
doi: 10.1016/j.camwa.2013.10.007. |
[8] |
W. Chen and S. Wang,
A finite difference method for pricing European and American options under a geometric Levy process, Journal of Industrial and Management Optimization, 11 (2015), 241-264.
doi: 10.3934/jimo.2015.11.241. |
[9] |
R. Company, L. Jodar and J. R. Pintos,
A numerical method for European option pricing with transaction costs nonlinear equation, Mathematics and Computer Modelling, 50 (2009), 910-920.
doi: 10.1016/j.mcm.2009.05.019. |
[10] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC, Boca Raton, FL, 2004.
![]() |
[11] |
R. Cont and E. Voltchkova,
A finite difference scheme for option pricing in jump diffusion and exponential lěvy models, SIAM J. Numer. Anal., 43 (2005), 1596-1626.
doi: 10.1137/S0036142903436186. |
[12] |
B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20. Google Scholar |
[13] |
B. D. üring, M. Fournier and A. J. üngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation, International Journal of Theoretical and Applied Finance, 6 (2003), 767-789. Google Scholar |
[14] |
Y. d'Halluin, P. A. Forsyth and K. R. Vetzal,
Robust numerical methods for contingent claims under jump diffusion processes, IMA J. Numer. Anal., 25 (2005), 87-112.
doi: 10.1093/imanum/drh011. |
[15] |
P. Heider,
Numerical methods for nonlinear Black-Scholes equations, Applied Mathematical Finance, 17 (2010), 59-81.
doi: 10.1080/13504860903075670. |
[16] |
S. L. Heston,
A closed-form solution for options with stochastic volatility with application to bond and currency options, Rev. Financial Stud., 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327. |
[17] |
C. Huang and S. Wang,
A power penalty approach to a nonlinear complementary problem, Operations Research Letters, 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009. |
[18] |
C. Huang and S. Wang,
A penalty method for a mixed nonlinear complementarity problem, Nonlinear Analysis TMA, 75 (2012), 588-597.
doi: 10.1016/j.na.2011.08.061. |
[19] |
C. S. Huang, C. H. Hung and S. Wang,
A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.
doi: 10.1007/s00607-006-0164-4. |
[20] | J. Hull, Options, Futures, and Other Derivatives, Prentice-Hall, Englewood Cliffs, 2005. Google Scholar |
[21] |
J. Hull and A. White,
The pricing of options on assets with stochastic volatilities, J. Finance, 42 (1987), 281-300.
doi: 10.1111/j.1540-6261.1987.tb02568.x. |
[22] |
H. E. Leland, Option pricing and replication with transaction costs, Journal of Finance, 40 (1985), 1283-1301. Google Scholar |
[23] |
D.C. Lesmana and S. Wang,
An upwind finite difference method for a nonlinear Black-Scholes equation governing European option valuation, Applied Mathematics and Computation, 219 (2013), 8818-8828.
doi: 10.1016/j.amc.2012.12.077. |
[24] |
D. C. Lesmana and S. Wang,
Penalty approach to a nonlinear obstacle problem governing American put option valuation under transaction costs, Applied Mathematics and Computation, 251 (2015), 318-330.
doi: 10.1016/j.amc.2014.11.060. |
[25] |
W. Li and S. Wang,
Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme, Journal of Industrial and Management Optimization, 9 (2013), 365-389.
doi: 10.3934/jimo.2013.9.365. |
[26] |
C. Van Loan,
Computational Frameworks for the Fast Fourier Transform, Frontier in applied mathematics, Vol. 10.SIAM, Philadelphia, PA, 1992.
doi: 10.1137/1.9781611970999. |
[27] |
R. C. Merton,
Option pricing when underlying stock returns are discontinuous, J. Financial Econ., 3 (1976), 125-144.
doi: 10.1016/0304-405X(76)90022-2. |
[28] |
A. Mocioalca,
Jump diffusion options with transaction costs, Rev. Roumaine Math. Pures Appl., 52 (2007), 349-366.
|
[29] |
R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1962.
![]() |
[30] |
S. Wang,
A penalty method for a finite-dimensional obstacle problem with derivative constraints, Optimization Letters, 8 (2014), 1799-1811.
doi: 10.1007/s11590-013-0651-4. |
[31] |
S. Wang,
A penalty approach to a discretized double obstacle problem with derivative constraints, Journal of Global Optimization, 62 (2015), 775-790.
doi: 10.1007/s10898-014-0262-3. |
[32] |
S. Wang and X. Q. Yang,
A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006. |
[33] |
S. Wang and X. Q. Yang,
A power penalty method for a bounded nonlinear complementarity problem, Optimization, 64 (2015), 2377-2394.
doi: 10.1080/02331934.2014.967236. |
[34] |
S. Wang, X. Q. Yang and K. L. Teo,
Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory & Applications, 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3. |
[35] |
S. Wang, S. Zhang and Z. Fang,
A superconvergent fitted finite volume method for Black-Scholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.
doi: 10.1002/num.21941. |
[36] |
Y.-P. Wang and S.-L. Tao,
Application of regularization technique to variational adjoint method: A case for nonlinear convection-diffusion problem, Applied Mathematics and Computation, 218 (2011), 4475-4482.
doi: 10.1016/j.amc.2011.10.028. |
[37] | P. Wilmott, J. Dewynne and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, Oxford, 1993. Google Scholar |
[38] |
D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, 1971.
![]() |
[39] |
K. Zhang and S. Wang,
Pricing options under jump diffusion processes with fitted finite volume method, Applied Mathematics & Computation, 201 (2008), 398-413.
doi: 10.1016/j.amc.2007.12.043. |
[40] |
K. Zhang and S. Wang,
A computational scheme for options under jump diffusion processes, International Journals of Numerical Analysis and Modeling, 6 (2009), 110-123.
|
[41] |
K. Zhang and S. Wang,
Pricing American bond options using a penalty method, Automatica, 48 (2012), 472-479.
doi: 10.1016/j.automatica.2012.01.009. |
[42] |
X. L. Zhang,
Numerical analysis of American option pricing in a jump diffusion model, Math. Oper. Res., 22 (1997), 668-690.
doi: 10.1287/moor.22.3.668. |
[43] |
Y. Y. Zhou, S. Wang and X. Q. Yang,
A penalty approximation method for a semilinear parabolic double obstacle problem, Journal of Global Optimization, 60 (2014), 531-550.
doi: 10.1007/s10898-013-0122-6. |



| | | Ratio |
21 | 11 | 0.215680 | |
41 | 21 | 0.116543 | 1.85 |
81 | 41 | 0.061550 | 1.89 |
161 | 81 | 0.031986 | 1.92 |
321 | 161 | 0.016228 | 1.97 |
641 | 321 | 0.007861 | 2.06 |
1281 | 641 | 0.003457 | 2.27 |
2561 | 1281 | 0.001170 | 2.96 |
| | | Ratio |
21 | 11 | 0.215680 | |
41 | 21 | 0.116543 | 1.85 |
81 | 41 | 0.061550 | 1.89 |
161 | 81 | 0.031986 | 1.92 |
321 | 161 | 0.016228 | 1.97 |
641 | 321 | 0.007861 | 2.06 |
1281 | 641 | 0.003457 | 2.27 |
2561 | 1281 | 0.001170 | 2.96 |
| | Ratio | |
21 | 11 | 0.454596 | |
41 | 21 | 0.438884 | 1.04 |
81 | 41 | 0.390547 | 1.12 |
161 | 81 | 0.327934 | 1.19 |
321 | 161 | 0.259319 | 1.26 |
641 | 321 | 0.189478 | 1.37 |
1281 | 641 | 0.121703 | 1.56 |
2561 | 1281 | 0.058168 | 2.09 |
| | Ratio | |
21 | 11 | 0.454596 | |
41 | 21 | 0.438884 | 1.04 |
81 | 41 | 0.390547 | 1.12 |
161 | 81 | 0.327934 | 1.19 |
321 | 161 | 0.259319 | 1.26 |
641 | 321 | 0.189478 | 1.37 |
1281 | 641 | 0.121703 | 1.56 |
2561 | 1281 | 0.058168 | 2.09 |
[1] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[2] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[3] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[4] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[5] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[6] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[7] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[8] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[9] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[10] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[11] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[12] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[13] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[14] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[15] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[16] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[17] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[18] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[19] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[20] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]