October  2017, 13(4): 1815-1840. doi: 10.3934/jimo.2017020

An uncertain wage contract model for risk-averse worker under bilateral moral hazard

Institute of Systems Engineering, Tianjin University, Tianjin 300072, China

* Corresponding author: Yanfei Lan, Email: lanyf@tju.edu.cn

Received  February 2016 Revised  October 2016 Published  December 2016

This paper investigates a wage mechanism design problem faced by a risk neutral firm (he) who employs a risk averse worker (she) to sell products for him. The effort levels of both the firm and the worker are unobservable to each other, which results in bilateral moral hazard. The firm offers a wage contract menu to the worker with the objective of maximizing his expected profit. The results show that the firm will provide the same wage contract to the worker when the worker's effort is observable regardless of the market condition being full or private information. The optimal wage contract is related to the worker's risk averse level when the bilateral moral hazard exists. The information values of the worker's effort and the market condition are studied, respectively. The results show that the firm benefits from the worker's observable effort under full information and only when the sales uncertainty is sufficiently low, can the firm profit from that under private information. Moreover, only if the cost coefficient of the firm's effort is sufficiently high, the firm can benefit from full information in the scenario when the worker's effort is unobservable.

Citation: Xiulan Wang, Yanfei Lan, Wansheng Tang. An uncertain wage contract model for risk-averse worker under bilateral moral hazard. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1815-1840. doi: 10.3934/jimo.2017020
References:
[1]

P. Agrawal, Double moral hazard, monitoring, and the nature of contracts, Journal of Economics, 75 (2002), 33-61.   Google Scholar

[2]

S. Bhattacharyya and F. Lafontaine, Double-sided moral hazard and the nature of share contracts, The Rand Journal of Economics, 26 (1995), 761-781.   Google Scholar

[3]

R. ChaoK. Lichtendahl and Y. Grushka-Cockayne, Incentives in a stage-gate process, Production and Operations Management, 23 (2014), 1286-1298.   Google Scholar

[4]

F. Chen, Salesforce incentives, market information, and production/inventory planning, Management Science, 51 (2005), 60-75.  doi: 10.1287/mnsc.1040.0217.  Google Scholar

[5]

F. Chen and M. Deng, Information Sharing in a Manufacturer-Supplier Relationship: Suppliers' Incentive and Production Efficiency, Production & Operations Management, 24 (2015), 619-633.  doi: 10.1111/poms.12261.  Google Scholar

[6]

K. ChenX. WangM. Huang and W. Ching, Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent, Journal of Industrial and Management Optimization, (2016).  doi: 10.3934/jimo.2016051.  Google Scholar

[7]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[8]

L. CuiR. Zhao and W. Tang, Principal-agent problem in a fuzzy environment, IEEE Transactions on Fuzzy Systems, 15 (2007), 1230-1237.   Google Scholar

[9]

S. Dutta, Managerial expertise, private information, and payperformance sensitivity, Management Science, 54 (2008), 429-442.   Google Scholar

[10]

J. FengY. Lan and R. Zhao, Impact of price cap regulation on supply chain contracting between two monopolists, Journal of Industrial and Management Optimization, (2016).  doi: 10.3934/jimo.2016021.  Google Scholar

[11]

M. Goldmanis and K. Ray, Sorting effects of performance pay, Management Science, 61 (2014), 335-353.   Google Scholar

[12]

B. Greenwald, Adverse selection in labour market, The Review of Economic Studies, 53 (1986), 325-347.  doi: 10.2307/2297632.  Google Scholar

[13]

S. Grossman and O. Hart, An analysis of the principal-agent problem, Econometrica, 51 (1983), 7-45.  doi: 10.2307/1912246.  Google Scholar

[14]

B. Holmstrom, Moral hazard in teams, The Bell Journal of Economics, 13 (1982), 324-340.  doi: 10.2307/3003457.  Google Scholar

[15]

S. Kim and S. Wang, Linear contracts and the double moral-hazard, Journal of Economic Theory, 82 (1998), 342-378.  doi: 10.1006/jeth.1998.2439.  Google Scholar

[16]

L. Kung and Y. Chen, Monitoring the market or the malesperson? The value of information in a multilayer supply chain, Management Science, 58 (2011), 743-762.  doi: 10.1002/nav.20480.  Google Scholar

[17]

Y. LanR. Zhao and W. Tang, A yardstick competition approach to a multi-firm regulation problem under asymmetric information, Journal of Computational and Applied Mathematics, 249 (2013), 24-36.  doi: 10.1016/j.cam.2013.01.017.  Google Scholar

[18] B. Liu, Theory and Practice of Uncertain Programming, 2 edition, Springer, Berlin, 2007.   Google Scholar
[19] B. Liu, Uncertainty Theory, Springer, Berlin, 2009.   Google Scholar
[20]

B. Liu, Uncertain logic for modeling human language, Journal of Uncertain Systems, 5 (2011), 3-20.   Google Scholar

[21]

Y. Liu and M. Ha, Expected value of function of uncertain variables, Journal of Uncertain Systems, 4 (2010), 181-186.   Google Scholar

[22]

G. Manso, Motivating innovation, The Journal of Finance, 66 (2011), 1823-1860.   Google Scholar

[23]

J. Mihm, Incentives in new product development projects and the role of target costing, Management Science, 56 (2010), 1324-1344.   Google Scholar

[24]

R. MuY. Lan and W. Tang, An uncertain contract model for rural migrant worker's employment problems, Fuzzy Optimization and Decision Making, 12 (2013), 29-39.  doi: 10.1007/s10700-012-9137-6.  Google Scholar

[25]

R. Myerson, Optimal coordination mechanisms in generalized principal-agent problems, Journal of Mathematical Economics, 10 (1982), 67-81.  doi: 10.1016/0304-4068(82)90006-4.  Google Scholar

[26]

Ö. Özalp and G. Raz, Supply chain sourcing under asymmetric information, Production and Operations Management, 20 (2011), 92-115.   Google Scholar

[27]

F. Page, Optimal contract mechanisms for principal-agent problems with moral hazard and adverse selection, Economic Theory, 1 (1991), 323-338.  doi: 10.1007/BF01229312.  Google Scholar

[28]

Y. Suzuki, Commitment problem, optimal incentive schemes, and relational contracts in agency with bilateral moral hazard, Journal of International Economic Studies, 21 (2007), 103-124.   Google Scholar

[29]

G. WangW. Tang and R. Zhao, An uncertain price discrimination model in labor market, Soft Computing, 17 (2013), 579-585.   Google Scholar

[30]

X. WangY. Lan and J. Wang, An uncertain wage contract model with adverse selection and moral hazard, Journal of Applied Mathematics, 1 (2014), 1-9.   Google Scholar

[31]

X. WuR. Zhao and W. Tang, Uncertain agency models with multi-dimensional incomplete information based on confidence level, Fuzzy Optimization and Decision Making, 13 (2013), 231-258.  doi: 10.1007/s10700-013-9174-9.  Google Scholar

[32]

W. Xiao and Y. Xu, The impact of royalty contract revision in a multi-stage strategic RD alliance, Management Science, 58 (2005), 2251-2271.   Google Scholar

[33]

K. YangY. Lan and R. Zhao, Monitoring mechanisms in new product development with risk-averse project manager, Journal of Intelligent Manufacturing, (2014), 1-15.   Google Scholar

[34]

Y. Zhu, Uncertain optimal control with aplication to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

P. Agrawal, Double moral hazard, monitoring, and the nature of contracts, Journal of Economics, 75 (2002), 33-61.   Google Scholar

[2]

S. Bhattacharyya and F. Lafontaine, Double-sided moral hazard and the nature of share contracts, The Rand Journal of Economics, 26 (1995), 761-781.   Google Scholar

[3]

R. ChaoK. Lichtendahl and Y. Grushka-Cockayne, Incentives in a stage-gate process, Production and Operations Management, 23 (2014), 1286-1298.   Google Scholar

[4]

F. Chen, Salesforce incentives, market information, and production/inventory planning, Management Science, 51 (2005), 60-75.  doi: 10.1287/mnsc.1040.0217.  Google Scholar

[5]

F. Chen and M. Deng, Information Sharing in a Manufacturer-Supplier Relationship: Suppliers' Incentive and Production Efficiency, Production & Operations Management, 24 (2015), 619-633.  doi: 10.1111/poms.12261.  Google Scholar

[6]

K. ChenX. WangM. Huang and W. Ching, Salesforce contract design, joint pricing and production planning with asymmetric overconfidence sales agent, Journal of Industrial and Management Optimization, (2016).  doi: 10.3934/jimo.2016051.  Google Scholar

[7]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[8]

L. CuiR. Zhao and W. Tang, Principal-agent problem in a fuzzy environment, IEEE Transactions on Fuzzy Systems, 15 (2007), 1230-1237.   Google Scholar

[9]

S. Dutta, Managerial expertise, private information, and payperformance sensitivity, Management Science, 54 (2008), 429-442.   Google Scholar

[10]

J. FengY. Lan and R. Zhao, Impact of price cap regulation on supply chain contracting between two monopolists, Journal of Industrial and Management Optimization, (2016).  doi: 10.3934/jimo.2016021.  Google Scholar

[11]

M. Goldmanis and K. Ray, Sorting effects of performance pay, Management Science, 61 (2014), 335-353.   Google Scholar

[12]

B. Greenwald, Adverse selection in labour market, The Review of Economic Studies, 53 (1986), 325-347.  doi: 10.2307/2297632.  Google Scholar

[13]

S. Grossman and O. Hart, An analysis of the principal-agent problem, Econometrica, 51 (1983), 7-45.  doi: 10.2307/1912246.  Google Scholar

[14]

B. Holmstrom, Moral hazard in teams, The Bell Journal of Economics, 13 (1982), 324-340.  doi: 10.2307/3003457.  Google Scholar

[15]

S. Kim and S. Wang, Linear contracts and the double moral-hazard, Journal of Economic Theory, 82 (1998), 342-378.  doi: 10.1006/jeth.1998.2439.  Google Scholar

[16]

L. Kung and Y. Chen, Monitoring the market or the malesperson? The value of information in a multilayer supply chain, Management Science, 58 (2011), 743-762.  doi: 10.1002/nav.20480.  Google Scholar

[17]

Y. LanR. Zhao and W. Tang, A yardstick competition approach to a multi-firm regulation problem under asymmetric information, Journal of Computational and Applied Mathematics, 249 (2013), 24-36.  doi: 10.1016/j.cam.2013.01.017.  Google Scholar

[18] B. Liu, Theory and Practice of Uncertain Programming, 2 edition, Springer, Berlin, 2007.   Google Scholar
[19] B. Liu, Uncertainty Theory, Springer, Berlin, 2009.   Google Scholar
[20]

B. Liu, Uncertain logic for modeling human language, Journal of Uncertain Systems, 5 (2011), 3-20.   Google Scholar

[21]

Y. Liu and M. Ha, Expected value of function of uncertain variables, Journal of Uncertain Systems, 4 (2010), 181-186.   Google Scholar

[22]

G. Manso, Motivating innovation, The Journal of Finance, 66 (2011), 1823-1860.   Google Scholar

[23]

J. Mihm, Incentives in new product development projects and the role of target costing, Management Science, 56 (2010), 1324-1344.   Google Scholar

[24]

R. MuY. Lan and W. Tang, An uncertain contract model for rural migrant worker's employment problems, Fuzzy Optimization and Decision Making, 12 (2013), 29-39.  doi: 10.1007/s10700-012-9137-6.  Google Scholar

[25]

R. Myerson, Optimal coordination mechanisms in generalized principal-agent problems, Journal of Mathematical Economics, 10 (1982), 67-81.  doi: 10.1016/0304-4068(82)90006-4.  Google Scholar

[26]

Ö. Özalp and G. Raz, Supply chain sourcing under asymmetric information, Production and Operations Management, 20 (2011), 92-115.   Google Scholar

[27]

F. Page, Optimal contract mechanisms for principal-agent problems with moral hazard and adverse selection, Economic Theory, 1 (1991), 323-338.  doi: 10.1007/BF01229312.  Google Scholar

[28]

Y. Suzuki, Commitment problem, optimal incentive schemes, and relational contracts in agency with bilateral moral hazard, Journal of International Economic Studies, 21 (2007), 103-124.   Google Scholar

[29]

G. WangW. Tang and R. Zhao, An uncertain price discrimination model in labor market, Soft Computing, 17 (2013), 579-585.   Google Scholar

[30]

X. WangY. Lan and J. Wang, An uncertain wage contract model with adverse selection and moral hazard, Journal of Applied Mathematics, 1 (2014), 1-9.   Google Scholar

[31]

X. WuR. Zhao and W. Tang, Uncertain agency models with multi-dimensional incomplete information based on confidence level, Fuzzy Optimization and Decision Making, 13 (2013), 231-258.  doi: 10.1007/s10700-013-9174-9.  Google Scholar

[32]

W. Xiao and Y. Xu, The impact of royalty contract revision in a multi-stage strategic RD alliance, Management Science, 58 (2005), 2251-2271.   Google Scholar

[33]

K. YangY. Lan and R. Zhao, Monitoring mechanisms in new product development with risk-averse project manager, Journal of Intelligent Manufacturing, (2014), 1-15.   Google Scholar

[34]

Y. Zhu, Uncertain optimal control with aplication to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Optimal bonus coefficient of the wage
Figure 2.  Optimal effort of the firm
Figure 3.  Optimal effort of the worker
Figure 4.  Impact of the worker's risk adverse level on VE1 and VE2
Figure 5.  Impact of the worker's risk adverse level on VM1 and VM2
Table 1.  The four information cases
$X$ known $X$ unknown
The worker's observable effortCase $\rm{OF}$Case $\rm{OP}$
The worker's unobservable effortCase $\rm{UF}$Case $\rm{UP}$
$X$ known $X$ unknown
The worker's observable effortCase $\rm{OF}$Case $\rm{OP}$
The worker's unobservable effortCase $\rm{UF}$Case $\rm{UP}$
[1]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[2]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[3]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[4]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[5]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (61)
  • HTML views (438)
  • Cited by (1)

Other articles
by authors

[Back to Top]