October  2017, 13(4): 1859-1881. doi: 10.3934/jimo.2017022

Non-convex semi-infinite min-max optimization with noncompact sets

1. 

School of Mathematics and Information Science, Weifang University, Weifang Shandong, 261061, China

2. 

School of Management Science, Qufu Normal University, Rizhao Shandong, 276826, China

* Corresponding author: Meixia Li

Received  October 2015 Revised  October 2016 Published  December 2016

Fund Project: This project is supported by the Natural Science Foundation of China (Grant No. 11571120,11271226,11271233,11401438,11401331), Shandong Provincial Natural Science Foundation (Grant No. ZR2013FL032) and the Project of Shandong Province Higher Educational Science and Technology Program (Grant No. J14LI52).

In this paper, first we study the non-convex sup-type functions with noncompact sets. Under quite mild conditions, the expressions of its derivative and subderivative along arbitrary direction are given. Furthermore, the structure of its subdifferential is characterized completely. Then, using these results, we establish first-order optimality conditions for semi-infinite min-max optimization problems. These results generalize and improve the corresponding results in the relevant literatures.

Citation: Meixia Li, Changyu Wang, Biao Qu. Non-convex semi-infinite min-max optimization with noncompact sets. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1859-1881. doi: 10.3934/jimo.2017022
References:
[1]

B. Betrò, An accelerated central cutting plane algorithm for linear semi-infinite programming, Math. Program., 101 (2004), 479-495.  doi: 10.1007/s10107-003-0492-5.  Google Scholar

[2]

S. C. FangC. J. Linb and S. Y. Wu, Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme, J. Comput. Appl. Math., 129 (2001), 89-104.  doi: 10.1016/S0377-0427(00)00544-6.  Google Scholar

[3]

D. Gale, A geometric duality theorem with economic applications, Rev. Econ. Stud., 34 (1967), 19-24.  doi: 10.2307/2296568.  Google Scholar

[4] M. A. Goberna and M. A. López, Semi-Infinite Programming-Recent Advances, Kluwer, Boston, 2001.  doi: 10.1007/978-1-4757-3403-4.  Google Scholar
[5]

F. Guerra-VazquezH. Th. Jongen and V. Shikhman, General semi-infinite programming: Symmetric Mangasarian-Fromovitz constraint qualification and the closure of the feasible set, SIAM J. Optim., 20 (2010), 2487-2503.  doi: 10.1137/090775294.  Google Scholar

[6]

A. Hantoute and M. A. López, A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions, J. Convex Anal., 15 (2008), 831-858.   Google Scholar

[7]

A. HantouteM. A. López and C. Zǎlinescu, Subdifferential calculus rules in convex analysis: A unifying approach via pointwise supremum functions, SIAM J. Optim., 19 (2008), 863-882.  doi: 10.1137/070700413.  Google Scholar

[8]

R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev., 35 (1993), 380-429.  doi: 10.1137/1035089.  Google Scholar

[9]

R. Hettich and G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Optimization, 34 (1995), 195-211.  doi: 10.1080/02331939508844106.  Google Scholar

[10]

H. Th. JongenJ. J. Rückmann and O. Stein, Generalized semi-infinite optimization: A first order optimality condition and examples, Math. Program., 83 (1998), 145-158.  doi: 10.1007/BF02680555.  Google Scholar

[11]

N. Kanzi and S. Nobakhtian, Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems, Eur. J. Oper. Res., 205 (2010), 253-261.  doi: 10.1016/j.ejor.2009.12.025.  Google Scholar

[12]

N. Kanzi, Necessary optimality conditions for nonsmooth semi-infinite programming problems, J. Global Optim., 49 (2011), 713-725.  doi: 10.1007/s10898-010-9561-5.  Google Scholar

[13]

N. Kanzi, Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems, J. Global Optim., 56 (2013), 417-430.  doi: 10.1007/s10898-011-9828-5.  Google Scholar

[14]

C. LingQ. NiL. Q. Qi and S. Y. Wu, A new smoothing Newton-type algorithm for semi-infinite programming, J. Global Optim., 47 (2010), 133-159.  doi: 10.1007/s10898-009-9462-7.  Google Scholar

[15]

Q. LiuC. Y. Wang and X. M. Yang, On the convergence of a smoothed penalty algorithm for semi-infinite programming, Math. Methods Oper. Res., 78 (2013), 203-220.  doi: 10.1007/s00186-013-0440-y.  Google Scholar

[16]

M. López and G. Still, Semi-infinite programming, Eur. J. Oper. Res., 180 (2007), 491-518.  doi: 10.1016/j.ejor.2006.08.045.  Google Scholar

[17]

S. K. MishraM. Jaiswal and H. A. Le Thi, Nonsmooth semi-infinite programming problem using limiting subdifferentials, J. Global Optim., 53 (2012), 285-296.  doi: 10.1007/s10898-011-9690-5.  Google Scholar

[18]

Q. NiC. LingL. Q. Qi and K. L. Teo, A truncated projected Newton-type algorithm for large-scale semi-infinite programming, SIAM J. Optim., 16 (2006), 1137-1154.  doi: 10.1137/040619867.  Google Scholar

[19] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0663-7.  Google Scholar
[20]

L. Q. QiS. Y. Wu and G. L. Zhou, Semismooth Newton methods for solving semi-infinite programming problems, J. Global Optim., 27 (2003), 215-232.  doi: 10.1023/A:1024814401713.  Google Scholar

[21] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.   Google Scholar
[22] R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer, New York, 1998.  doi: 10.1007/978-3-642-02431-3.  Google Scholar
[23]

J. J. Rückmann and A. Shapiro, First-order optimality conditions in generalized semi-infinite programming, J. Optim. Theory and Appl., 101 (1999), 677-691.  doi: 10.1023/A:1021746305759.  Google Scholar

[24]

A. Shapiro, On duality theory of convex semi-infinite programming, Optimization, 54 (2005), 535-543.  doi: 10.1080/02331930500342823.  Google Scholar

[25]

A. Shapiro, Semi-infinite programming, duality, discretization and optimality condition, Optimization, 58 (2009), 133-161.  doi: 10.1080/02331930902730070.  Google Scholar

[26]

V. N. Solov'ev, The subdifferential and the directional derivatives of the maximum of a family of convex functions, Izv. Math., 62 (1998), 807-832.  doi: 10.1070/im1998v062n04ABEH000192.  Google Scholar

[27]

V. N. Solov'ev, The subdifferential and the directional derivatives of the maximum of a family of convex functions. Ⅱ, Izv. Math., 65 (2001), 99-121.  doi: 10.1070/im2001v065n01ABEH000323.  Google Scholar

[28]

O. Stein and G. Still, On optimality conditions for generalized semi-infinite programming problems, J. Optim. Theory Appl., 104 (2000), 443-458.  doi: 10.1023/A:1004622015901.  Google Scholar

[29]

O. Stein, First order optimality conditions for degenerate index sets in generalized semi-infinite programming, Math. Oper. Res., 26 (2001), 565-582.  doi: 10.1287/moor.26.3.565.10583.  Google Scholar

[30]

O. Stein and A. Winterfeld, Feasible method for generalized semi-infinite programming, J. Optim. Theory Appl., 146 (2010), 419-443.  doi: 10.1007/s10957-010-9674-5.  Google Scholar

[31]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[32]

X. J. TongC. Ling and L. Q. Qi, A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints, J. Comput. Appl. Math., 217 (2008), 432-447.  doi: 10.1016/j.cam.2007.02.026.  Google Scholar

[33]

A. I. F. Vaz and E. C. Ferreira, Air pollution control with semi-infinite programming, Appl. Math. Modelling, 33 (2009), 1957-1969.  doi: 10.1016/j.apm.2008.05.008.  Google Scholar

[34]

F. G. Vázquez and J. J. Rückmann, Extensions of the Kuhn-Tucker constraint qualification to generalized semi-infinite programming, SIAM J. Optim., 15 (2005), 926-937.  doi: 10.1137/S1052623403431500.  Google Scholar

[35]

C. Y. Wang and J. Y. Han, The stability of the maximum entropy method for nonsmooth semi-infinite programming, Sci. China Ser. A., 42 (1999), 1129-1136.  doi: 10.1007/BF02875980.  Google Scholar

[36]

C. Y. WangX. Q. Yang and X. M. Yang, Optimal value functions of generalized semi-infinite min-max programming on a noncompact set, Sci. China Ser. A., 48 (2005), 261-276.  doi: 10.1360/03YS0197.  Google Scholar

[37]

J. J. Ye and S. Y. Wu, First order optimality conditions for generalized semi-infinite programming problems, J. Optim. Theory Appl., 137 (2008), 419-434.  doi: 10.1007/s10957-008-9352-z.  Google Scholar

[38] C. Zǎlinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.  doi: 10.1142/9789812777096.  Google Scholar
[39]

L. P. ZhangS. C. Fang and S. Y. Wu, An entropy based central plane algorithm for convex min-max semi-infinite programming problems, Sci. China Math., 56 (2013), 201-211.  doi: 10.1007/s11425-012-4502-z.  Google Scholar

[40]

X. Y. Zheng and X. Q. Yang, Lagrange multipliers in nonsmooth semi-infinite optimization problems, Math. Oper. Res., 32 (2007), 168-181.  doi: 10.1287/moor.1060.0234.  Google Scholar

[41]

J. C. ZhouC. Y. WangN. H. Xiu and S. Y. Wu, First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets, J. Ind. Manag. Optim., 5 (2009), 851-866.  doi: 10.3934/jimo.2009.5.851.  Google Scholar

show all references

References:
[1]

B. Betrò, An accelerated central cutting plane algorithm for linear semi-infinite programming, Math. Program., 101 (2004), 479-495.  doi: 10.1007/s10107-003-0492-5.  Google Scholar

[2]

S. C. FangC. J. Linb and S. Y. Wu, Solving quadratic semi-infinite programming problems by using relaxed cutting-plane scheme, J. Comput. Appl. Math., 129 (2001), 89-104.  doi: 10.1016/S0377-0427(00)00544-6.  Google Scholar

[3]

D. Gale, A geometric duality theorem with economic applications, Rev. Econ. Stud., 34 (1967), 19-24.  doi: 10.2307/2296568.  Google Scholar

[4] M. A. Goberna and M. A. López, Semi-Infinite Programming-Recent Advances, Kluwer, Boston, 2001.  doi: 10.1007/978-1-4757-3403-4.  Google Scholar
[5]

F. Guerra-VazquezH. Th. Jongen and V. Shikhman, General semi-infinite programming: Symmetric Mangasarian-Fromovitz constraint qualification and the closure of the feasible set, SIAM J. Optim., 20 (2010), 2487-2503.  doi: 10.1137/090775294.  Google Scholar

[6]

A. Hantoute and M. A. López, A complete characterization of the subdifferential set of the supremum of an arbitrary family of convex functions, J. Convex Anal., 15 (2008), 831-858.   Google Scholar

[7]

A. HantouteM. A. López and C. Zǎlinescu, Subdifferential calculus rules in convex analysis: A unifying approach via pointwise supremum functions, SIAM J. Optim., 19 (2008), 863-882.  doi: 10.1137/070700413.  Google Scholar

[8]

R. Hettich and K. O. Kortanek, Semi-infinite programming: Theory, methods, and applications, SIAM Rev., 35 (1993), 380-429.  doi: 10.1137/1035089.  Google Scholar

[9]

R. Hettich and G. Still, Second order optimality conditions for generalized semi-infinite programming problems, Optimization, 34 (1995), 195-211.  doi: 10.1080/02331939508844106.  Google Scholar

[10]

H. Th. JongenJ. J. Rückmann and O. Stein, Generalized semi-infinite optimization: A first order optimality condition and examples, Math. Program., 83 (1998), 145-158.  doi: 10.1007/BF02680555.  Google Scholar

[11]

N. Kanzi and S. Nobakhtian, Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems, Eur. J. Oper. Res., 205 (2010), 253-261.  doi: 10.1016/j.ejor.2009.12.025.  Google Scholar

[12]

N. Kanzi, Necessary optimality conditions for nonsmooth semi-infinite programming problems, J. Global Optim., 49 (2011), 713-725.  doi: 10.1007/s10898-010-9561-5.  Google Scholar

[13]

N. Kanzi, Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems, J. Global Optim., 56 (2013), 417-430.  doi: 10.1007/s10898-011-9828-5.  Google Scholar

[14]

C. LingQ. NiL. Q. Qi and S. Y. Wu, A new smoothing Newton-type algorithm for semi-infinite programming, J. Global Optim., 47 (2010), 133-159.  doi: 10.1007/s10898-009-9462-7.  Google Scholar

[15]

Q. LiuC. Y. Wang and X. M. Yang, On the convergence of a smoothed penalty algorithm for semi-infinite programming, Math. Methods Oper. Res., 78 (2013), 203-220.  doi: 10.1007/s00186-013-0440-y.  Google Scholar

[16]

M. López and G. Still, Semi-infinite programming, Eur. J. Oper. Res., 180 (2007), 491-518.  doi: 10.1016/j.ejor.2006.08.045.  Google Scholar

[17]

S. K. MishraM. Jaiswal and H. A. Le Thi, Nonsmooth semi-infinite programming problem using limiting subdifferentials, J. Global Optim., 53 (2012), 285-296.  doi: 10.1007/s10898-011-9690-5.  Google Scholar

[18]

Q. NiC. LingL. Q. Qi and K. L. Teo, A truncated projected Newton-type algorithm for large-scale semi-infinite programming, SIAM J. Optim., 16 (2006), 1137-1154.  doi: 10.1137/040619867.  Google Scholar

[19] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, New York, 1997.  doi: 10.1007/978-1-4612-0663-7.  Google Scholar
[20]

L. Q. QiS. Y. Wu and G. L. Zhou, Semismooth Newton methods for solving semi-infinite programming problems, J. Global Optim., 27 (2003), 215-232.  doi: 10.1023/A:1024814401713.  Google Scholar

[21] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.   Google Scholar
[22] R. T. Rockafellar and R. J. Wets, Variational Analysis, Springer, New York, 1998.  doi: 10.1007/978-3-642-02431-3.  Google Scholar
[23]

J. J. Rückmann and A. Shapiro, First-order optimality conditions in generalized semi-infinite programming, J. Optim. Theory and Appl., 101 (1999), 677-691.  doi: 10.1023/A:1021746305759.  Google Scholar

[24]

A. Shapiro, On duality theory of convex semi-infinite programming, Optimization, 54 (2005), 535-543.  doi: 10.1080/02331930500342823.  Google Scholar

[25]

A. Shapiro, Semi-infinite programming, duality, discretization and optimality condition, Optimization, 58 (2009), 133-161.  doi: 10.1080/02331930902730070.  Google Scholar

[26]

V. N. Solov'ev, The subdifferential and the directional derivatives of the maximum of a family of convex functions, Izv. Math., 62 (1998), 807-832.  doi: 10.1070/im1998v062n04ABEH000192.  Google Scholar

[27]

V. N. Solov'ev, The subdifferential and the directional derivatives of the maximum of a family of convex functions. Ⅱ, Izv. Math., 65 (2001), 99-121.  doi: 10.1070/im2001v065n01ABEH000323.  Google Scholar

[28]

O. Stein and G. Still, On optimality conditions for generalized semi-infinite programming problems, J. Optim. Theory Appl., 104 (2000), 443-458.  doi: 10.1023/A:1004622015901.  Google Scholar

[29]

O. Stein, First order optimality conditions for degenerate index sets in generalized semi-infinite programming, Math. Oper. Res., 26 (2001), 565-582.  doi: 10.1287/moor.26.3.565.10583.  Google Scholar

[30]

O. Stein and A. Winterfeld, Feasible method for generalized semi-infinite programming, J. Optim. Theory Appl., 146 (2010), 419-443.  doi: 10.1007/s10957-010-9674-5.  Google Scholar

[31]

Y. TanakaM. Fukushima and T. Ibaraki, A globally convergent SQP method for semi-infinite nonlinear optimization, J. Comput. Appl. Math., 23 (1988), 141-153.  doi: 10.1016/0377-0427(88)90276-2.  Google Scholar

[32]

X. J. TongC. Ling and L. Q. Qi, A semi-infinite programming algorithm for solving optimal power flow with transient stability constraints, J. Comput. Appl. Math., 217 (2008), 432-447.  doi: 10.1016/j.cam.2007.02.026.  Google Scholar

[33]

A. I. F. Vaz and E. C. Ferreira, Air pollution control with semi-infinite programming, Appl. Math. Modelling, 33 (2009), 1957-1969.  doi: 10.1016/j.apm.2008.05.008.  Google Scholar

[34]

F. G. Vázquez and J. J. Rückmann, Extensions of the Kuhn-Tucker constraint qualification to generalized semi-infinite programming, SIAM J. Optim., 15 (2005), 926-937.  doi: 10.1137/S1052623403431500.  Google Scholar

[35]

C. Y. Wang and J. Y. Han, The stability of the maximum entropy method for nonsmooth semi-infinite programming, Sci. China Ser. A., 42 (1999), 1129-1136.  doi: 10.1007/BF02875980.  Google Scholar

[36]

C. Y. WangX. Q. Yang and X. M. Yang, Optimal value functions of generalized semi-infinite min-max programming on a noncompact set, Sci. China Ser. A., 48 (2005), 261-276.  doi: 10.1360/03YS0197.  Google Scholar

[37]

J. J. Ye and S. Y. Wu, First order optimality conditions for generalized semi-infinite programming problems, J. Optim. Theory Appl., 137 (2008), 419-434.  doi: 10.1007/s10957-008-9352-z.  Google Scholar

[38] C. Zǎlinescu, Convex Analysis in General Vector Spaces, World Scientific, Singapore, 2002.  doi: 10.1142/9789812777096.  Google Scholar
[39]

L. P. ZhangS. C. Fang and S. Y. Wu, An entropy based central plane algorithm for convex min-max semi-infinite programming problems, Sci. China Math., 56 (2013), 201-211.  doi: 10.1007/s11425-012-4502-z.  Google Scholar

[40]

X. Y. Zheng and X. Q. Yang, Lagrange multipliers in nonsmooth semi-infinite optimization problems, Math. Oper. Res., 32 (2007), 168-181.  doi: 10.1287/moor.1060.0234.  Google Scholar

[41]

J. C. ZhouC. Y. WangN. H. Xiu and S. Y. Wu, First-order optimality conditions for convex semi-infinite min-max programming with noncompact sets, J. Ind. Manag. Optim., 5 (2009), 851-866.  doi: 10.3934/jimo.2009.5.851.  Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[5]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[14]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[15]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[19]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[20]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (67)
  • HTML views (432)
  • Cited by (0)

Other articles
by authors

[Back to Top]