Parameter set | Optimal point |
(a) |
(0.5722, 0.4278) |
(b) |
(0.5198, 0.4802) |
(c) |
(0.3714, 0.4143) |
(d) |
(0.3688, 0.3925) |
In this paper, we consider an underlay type cognitive radio network with multiple secondary users who contend to access multiple heterogeneous licensed channels. With the help of stochastic geometry we develop a new analytical model to analyze a random channel access protocol where each secondary user determines whether to access a licensed channel based on a given access probability. In our analysis we introduce the so-called interference-free region to derive the coverage probability for an arbitrary secondary user. With the help of the interference-free region we approximate the interferences at an arbitrary secondary user from primary users as well as from secondary users in a simple way. Based on our analytical model we obtain the optimal access probabilities that maximize the throughput. Numerical examples are provided to validate our analysis.
Citation: |
Table 1. The optimal point obtained from analysis under parameter sets (a) to (d)
Parameter set | Optimal point |
(a) |
(0.5722, 0.4278) |
(b) |
(0.5198, 0.4802) |
(c) |
(0.3714, 0.4143) |
(d) |
(0.3688, 0.3925) |
Table 2.
throughput over
![]() |
0.41 | 0.42 | 0.43 | 0.44 | 0.45 |
0.55 | 0.611956 | 0.616004 | 0.620971 | 0.626117 | 0.630063 |
0.56 | 0.616728 | 0.621303 | 0.626249 | 0.630435 | - |
0.57 | 0.621165 | 0.625826 | 0.630827 | - | - |
0.58 | 0.626057 | 0.630756 | - | - | - |
0.59 | 0.630405 | - | - | - | - |
Table 3.
throughput over
![]() |
0.46 | 0.47 | 0.48 | 0.49 | 0.50 |
0.50 | 0.656962 | 0.661976 | 0.667183 | 0.671202 | 0.675827 |
0.51 | 0.662102 | 0.666946 | 0.672465 | 0.676458 | - |
0.52 | 0.667741 | 0.672843 | 0.677074 | - | - |
0.53 | 0.672488 | 0.676938 | - | - | - |
0.54 | 0.676835 | - | - | - | - |
Table 4.
throughput over
![]() |
0.39 | 0.40 | 0.41 | 0.42 | 0.43 |
0.35 | 0.236905 | 0.237417 | 0.238089 | 0.237907 | 0.237750 |
0.36 | 0.237910 | 0.237729 | 0.237724 | 0.238186 | 0.238567 |
0.37 | 0.237818 | 0.237955 | 0.237926 | 0.238400 | 0.238395 |
0.38 | 0.237836 | 0.238351 | 0.238569 | 0.238292 | 0.238104 |
0.39 | 0.238228 | 0.238257 | 0.238475 | 0.238197 | 0.238343 |
Table 5.
throughput over
![]() |
0.37 | 0.38 | 0.39 | 0.40 | 0.41 |
0.35 | 0.243218 | 0.244021 | 0.243855 | 0.244004 | 0.243705 |
0.36 | 0.243233 | 0.243758 | 0.243913 | 0.243568 | 0.243585 |
0.37 | 0.243763 | 0.244133 | 0.243675 | 0.243949 | 0.243908 |
0.38 | 0.243935 | 0.243805 | 0.243465 | 0.243912 | 0.243500 |
0.39 | 0.243420 | 0.243700 | 0.243563 | 0.243473 | 0.243394 |
[1] |
A. Babaei and B. Jabbari, Throughput Optimization in Cognitive Random Wireless Ad hoc Networks,
Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE,(2010).
doi: 10.1109/GLOCOM.2010.5684066.![]() ![]() |
[2] |
F. Baccelli, B. Blaszczyszyn and M. Karray, Up and downlink admission/congestion control
and maximal load in large homogeneous CDMA networks, MONET, 9 (2004), 605-617.
doi: 10.1023/B:MONE.0000042499.64488.ba.![]() ![]() |
[3] |
F. Baccelli, B. Blaszczyszyn and F. Tournois, Downlink admission/congestion control and maximal load in CDMA networks, in Proc. IEEE INFOCOM, (2003).
doi: 10.1109/INFCOM.2003.1208722.![]() ![]() |
[4] |
A. Busson, B. Jabbari, A. Babaei and V. Véque, Interference and throughput in spectrum
sensing cognitive radio networks using point processes, Communications and Networks, Journal of, 16 (2014), 67-80.
doi: 10.1109/JCN.2014.000010.![]() ![]() |
[5] |
C. C. Chan and S. V. Hanly, Calculating the outage probability in a CDMA network with
spatial Poisson traffic, IEEE Trans. Veh. Technol., 50 (2001), 183-204.
doi: 10.1109/25.917918.![]() ![]() |
[6] |
V. Chandrasekhar and J. G. Andrews, Uplink capacity and interference avoidance for two-tier cellular networks, IEEE Trans. Wireless Commun., (2009).
![]() |
[7] |
O. Dousse, M. Franceschetti and P. Thiran, On the throughput scaling of wireless relay
networks, IEEE Trans. Inform. Theory, 52 (2006), 2756-2761.
doi: 10.1109/TIT.2006.874537.![]() ![]() ![]() |
[8] |
Federal Communications Commission, Spectrum policy task force, Rep. ET Docket, 2 (2002).
![]() |
[9] |
Federal Communications Commission, Notice of proposed rule making and order, Rep. ET Docket, 2 (2003).
![]() |
[10] |
A. Ghasemi and E. Sousa, Interference aggregation in spectrumsensing cognitive wireless networks, IEEE J. Select. Topics Signal Processing, 2 (2008), 41-56.
![]() |
[11] |
A. Goldsmith, S. A. Jafar, I. Maric and S. Srinivasa, Breaking spectrum gridlock with cognitive
radios: An information theoretic perspective, Proc. IEEE, 97 (2009), 894-914.
doi: 10.1109/JPROC.2009.2015717.![]() ![]() |
[12] |
M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse and M. Franceschetti, Stochastic Geometry and Random Graphs for the Analysis and Design of Wireless Networks, IEEE J. Select. Areas Commun., 27 (2009).
doi: 10.1109/JSAC.2009.090902.![]() ![]() |
[13] |
J. Lee, J. G. Andrews and D. Hong, Spectrum-sharing transmission capacity, IEEE Trans. Wireless Commun., 10 (2011), 3053-3063.
doi: 10.1109/TWC.2011.070511.101941.![]() ![]() |
[14] |
C. Lee and M. Haenggi, Interference and outage in poisson cognitive networks, IEEE Trans. Wireless Commun., 11 (2012), 1392-1401.
doi: 10.1109/TWC.2012.021512.110131.![]() ![]() |
[15] |
D. Moltchanov, Distance distributions in random networks, Ad Hoc Networks, 10 (2012), 1146-1166.
![]() |
[16] |
T. V. Nguyen and F. Baccelli, A probabilistic model of carrier sensing based cognitive radio, New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, (2010), 1-12.
doi: 10.1109/DYSPAN.2010.5457860.![]() ![]() |
[17] |
T. V. Nguyen and F. Baccelli, A stochastic geometry model for cognitive radio networks, The Computer Journal, 55 (2012), 534-552.
doi: 10.1093/comjnl/bxr049.![]() ![]() |
[18] |
P. Pinto, A. Giorgetti, M. Chiani and M. Win, A stochastic geometry approach to coexistence in heterogeneous wireless networks, IEEE J. Select. Areas Commun., 2009 (2009).
![]() |
[19] |
W. Ren, Q. Zhao and A. Swami, Power control in cognitive radio networks: How to cross a multi-lane highway, IEEE J. Select. Areas Commun., 27 (2009).
![]() |
[20] |
X. Song, C. Yin, D. Liu and R. Zhang, Spatial Opportunity in Cognitive Radio Networks
with Threshold-Based Opportunistic Spectrum Access, Communications (ICC), 2013 IEEE International Conference on, (2013), 2695-2700.
doi: 10.1109/ICC.2013.6654944.![]() ![]() |
[21] |
D. Stoyan, W. Kendall and J. Mecke, Stochastic Geometry and Its Applications, 2 edition, John Wiley and Sons, 1996.
![]() |
[22] |
R. Vaze, Transmission capacity of spectrum sharing ad hoc networks with multiple antennas, IEEE Trans. Wireless Commun., 10 (2011), 2334-2340.
doi: 10.1109/WIOPT.2011.5930039.![]() ![]() |
[23] |
X. Yang and A. Petropulu, Co-channel interference modelling and analysis in a Poisson field
of interferers in wireless communications, IEEE Trans. Signal Processing, 51 (2003), 64-76.
doi: 10.1109/TSP.2002.806591.![]() ![]() ![]() |
[24] |
C. Yin, L. Gao and S. Cui, Scaling laws for overlaid wireless networks: A cognitive radio network vs. a primary network, IEEE/ACM Transactions on, 18 (2010), 1317-1329.
doi: 10.1109/GLOCOM.2008.ECP.244.![]() ![]() |
[25] |
C. Yin, C. Chen, T. Liu and S. Cui, Generalized results of transmission capacities for overlaid
wireless networks, in Proc. IEEE Int. Symp. Inf. Theory, Seoul, Korea, (2009), 1774-1778.
doi: 10.1109/ISIT.2009.5205273.![]() ![]() |
[26] |
J. Zhang and J. G. Andrews, Distributed antenna systems with randomness, IEEE Trans. Wireless Commun., 7 (2008), 3636-3646.
![]() |
[27] |
Q. Zhao and B. Sadler, A survey of dynamic spectrum access, IEEE Signal Process. Mag., 24 (2007), 79-89.
![]() |