January  2018, 14(1): 1-17. doi: 10.3934/jimo.2017034

The optimal cash holding models for stochastic cash management of continuous time

1. 

Dept. of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China

2. 

School of Economics and Management, Yancheng Institute of Technology, Yancheng 224056, China

3. 

Dept. of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China

4. 

Southampton Statistical Sciences Research Institute and School of Mathematical Sciences, University of Southampton, SO17 1BJ, UK

Received  March 2015 Revised  August 2016 Published  April 2017

In business, enterprises need to maintain stable cash flows to meet the demands for payments in order to reduce the probability of possible bankruptcy. In this paper, we propose the optimal cash holding models in terms of continuous time and managers' risk preference in the framework of stochastic control theory in the setting of cash balance accounting with the interval of a safe area for cash holdings. Formulas for the optimal cash holdings are analytically derived with a widely used family of power utility functions. Our models can be seen as an extension of Miller-Orr model to solve the cash holding problem of continuous time from the accounting perspective. Numerical examples are also provided to illustrate the feasibility of the developed optimal cashing holding models of continuous time.

Citation: Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034
References:
[1]

S. Baccarin, Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32.  doi: 10.1007/s102030200001.  Google Scholar

[2]

A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216.   Google Scholar

[3]

A. Bar-IlanD. Perry and W. Stadje, A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033.  doi: 10.1016/S0165-1889(03)00064-2.  Google Scholar

[4]

A. Bar-Ilan and D. Lederman, International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178.  doi: 10.1016/j.econlet.2007.03.001.  Google Scholar

[5]

W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546.   Google Scholar

[6]

A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362.   Google Scholar

[7]

A. BensoussanA. Chutani and S. P. Sethi, Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429.  doi: 10.1016/j.orl.2009.08.002.  Google Scholar

[8]

F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730.   Google Scholar

[9]

H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256.   Google Scholar

[10]

H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626.   Google Scholar

[11]

A. Dixit, A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673.  doi: 10.1016/0165-1889(91)90037-2.  Google Scholar

[12]

G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133.   Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006. doi: 10. 1007/978-0-387-26045-7.  Google Scholar

[14]

J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43.   Google Scholar

[15]

J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514.   Google Scholar

[16]

N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140.   Google Scholar

[17]

W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857.   Google Scholar

[18]

I. KaratzasJ. P. LehoczkyS.E. Shreve and G.L. Xu, Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.  Google Scholar

[19]

M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252.   Google Scholar

[20]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257.   Google Scholar

[21]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[22]

R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698.   Google Scholar

[23]

M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435.   Google Scholar

[24]

M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576.   Google Scholar

[25]

D. Perry and W. Stadje, Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36.  doi: 10.1016/S0167-6687(99)00037-2.  Google Scholar

[26]

G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633.   Google Scholar

[27]

N. SongW. K. ChingT. K. Siu and K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92.  doi: 10.4208/eajam.070313.220413a.  Google Scholar

[28]

J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247.   Google Scholar

[29]

R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369.   Google Scholar

show all references

References:
[1]

S. Baccarin, Optimal impulse control for cash management with quadratic holding-penalty costs, Decis. Econ. Finance, 25 (2002), 19-32.  doi: 10.1007/s102030200001.  Google Scholar

[2]

A. Bar-Ilan, Overdraft and the demand for money, Am. Econ. Rev., 80 (1990), 1201-1216.   Google Scholar

[3]

A. Bar-IlanD. Perry and W. Stadje, A generalized impulse control model of cash management, J. Econ. Dyn. Control, 28 (2004), 1013-1033.  doi: 10.1016/S0165-1889(03)00064-2.  Google Scholar

[4]

A. Bar-Ilan and D. Lederman, International reserves and monetary policy, Econ. Lett., 97 (2007), 170-178.  doi: 10.1016/j.econlet.2007.03.001.  Google Scholar

[5]

W. Baumol, The transaction demand for cash -an inventory theoretic approach, Q. J. Econ., 66 (1952), 545-546.   Google Scholar

[6]

A. Ben-Bassat and D. Gottlieb, Optimal international reserves and sovereign risk, J. Int. Econ., 33 (1992), 345-362.   Google Scholar

[7]

A. BensoussanA. Chutani and S. P. Sethi, Optimal cash managementunder uncertainty, Operations Research Letters, 37 (2009), 425-429.  doi: 10.1016/j.orl.2009.08.002.  Google Scholar

[8]

F. Chang, Homogeneity and the transactions demand for money, J. Money Credit Bank., 31 (1999), 720-730.   Google Scholar

[9]

H. G. Daellenbach, A stochastic cash balance model with two sources of short-term funds, Int. Econ. Rev., 12 (1971), 250-256.   Google Scholar

[10]

H. G. Daellenbach, Daellenbach, H.G. Are cash management optimization models worthwhile?, J. Financ. Quant. Anal., 9 (1974), 607-626.   Google Scholar

[11]

A. Dixit, A simplied exposition of the theory of optimal control of Brownian motion, J. Econ. Dyn. Control, 15 (1991), 657-673.  doi: 10.1016/0165-1889(91)90037-2.  Google Scholar

[12]

G. D. Eppen and E. Fama, Cash balance and simple dynamic portfolio problems with proportional costs, Int. Econ. Rev., 10 (1969), 119-133.   Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Berlin, New York, 2006. doi: 10. 1007/978-0-387-26045-7.  Google Scholar

[14]

J. Frenkel and B. Jovanovic, On transactions and precautionary demand for money, Q. J. Econ., 94 (1980), 24-43.   Google Scholar

[15]

J. Frenkel and B. Jovanovic, Optimal international reserves: A stochastic framework, Econ. J., 91 (1981), 507-514.   Google Scholar

[16]

N. Girgis, Optimal cash balance levels, Manage. Sci., 15 (1968), 130-140.   Google Scholar

[17]

W. H. Hausman and A. Sanchez-Bell, The stochastic cash balance problem with average compensating-balance requirements, Manage. Sci., 21 (1975), 849-857.   Google Scholar

[18]

I. KaratzasJ. P. LehoczkyS.E. Shreve and G.L. Xu, Martingale and duality for utility maximization in an incomplete market, SIAM J. Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.  Google Scholar

[19]

M. A. S. Melo and F. Bilich, Expectancy balance model for cash flow, Journal of Economics and Finance, 37 (2013), 240-252.   Google Scholar

[20]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous time case, Review of Economics and Statistics, 51 (1969), 247-257.   Google Scholar

[21]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[22]

R. Milbourne, Optimal money holding under uncertainty, Int. Econ. Rev., 24 (1983), 685-698.   Google Scholar

[23]

M. Miller and D. Orr, A model of the demand for money by firms, Q. J. Econ., 81 (1966), 413-435.   Google Scholar

[24]

M. B. C. Moraes and M. S. Nagano, Cash management policies by evolutionary models: A comparison using the Miller-Orr model, JISTEM, 10 (2013), 561-576.   Google Scholar

[25]

D. Perry and W. Stadje, Risk analysis for a stochastic cash management model with two types of customers, Insur. Math. Econ., 26 (2000), 25-36.  doi: 10.1016/S0167-6687(99)00037-2.  Google Scholar

[26]

G. W. Smith, Transactions demand for money with a stochastic, time-varying interest rate, Rev. Econ. Stud., 56 (1989), 623-633.   Google Scholar

[27]

N. SongW. K. ChingT. K. Siu and K. F. Yiu, On optimal cash management under a stochastic volatility model, East Asian Journal on Applied Mathematics, 3 (2013), 81-92.  doi: 10.4208/eajam.070313.220413a.  Google Scholar

[28]

J. Tobin, The interest elasticity of the transaction demand for cash, Rev. Econ. Stat., 38 (1956), 241-247.   Google Scholar

[29]

R. G. Vickson, Simple optimal policy for cash management: The average balance requirement case, J. Financ. Quant. Anal., 20 (1985), 353-369.   Google Scholar

Figure 1.  optimal cash holding model in case 1
Figure 2.  optimal cash holding model in case 2
Figure 3.  optimal allocation to cash for different p values
Table 1.  The daily average yield and variance
stock number daily average yield variance
A0.0003990.000437
B0.0004330.000687
C0.0004430.0019
D0.0004630.00055
stock number daily average yield variance
A0.0003990.000437
B0.0004330.000687
C0.0004430.0019
D0.0004630.00055
Table 2.  The optimal cash holdings in case 1: $X_t>H$
stock numberinvest ratio $ \lambda_{t}^{*} $ in (17)$(1-\lambda_{t}^{*})X_{t} $optimal cash holdings
A0.7568911944.8711944.871
B0.5423023661.5863661.586
C0.043797649.6847000
D0.8154141476.6851476.685
stock numberinvest ratio $ \lambda_{t}^{*} $ in (17)$(1-\lambda_{t}^{*})X_{t} $optimal cash holdings
A0.7568911944.8711944.871
B0.5423023661.5863661.586
C0.043797649.6847000
D0.8154141476.6851476.685
Table 3.  The optimal cash holdings in case 2: $X_t<L$
stock numberconversion ratio $ \mu_{t}^{*} $ in (23) $ \mu_{t}^{*}R_{t}+X_{t} $optimal cash holdings
A0.1244431944.87111944.8711
B0.3832884326.24584326.2458
C0.7706537890.01047000
D0.1637942306.90472306.9047
stock numberconversion ratio $ \mu_{t}^{*} $ in (23) $ \mu_{t}^{*}R_{t}+X_{t} $optimal cash holdings
A0.1244431944.87111944.8711
B0.3832884326.24584326.2458
C0.7706537890.01047000
D0.1637942306.90472306.9047
Table 4.  The optimal cash holdings with different p values
pinvest ratio $ \lambda_{t}^{*} $ in (17) $(1- \lambda_{t}^{*})X_{t} $optimal cash holdings
0.10.043797649.6847000
0.20.046727626.2627000
0.30.089117287.1567000
0.40.145626835.0166835
0.50.224756202.0196202
0.60.343445252.5235252
0.70.541253670.0313670
0.80.93687505.0471000
0.92.12374-8989.911000
pinvest ratio $ \lambda_{t}^{*} $ in (17) $(1- \lambda_{t}^{*})X_{t} $optimal cash holdings
0.10.043797649.6847000
0.20.046727626.2627000
0.30.089117287.1567000
0.40.145626835.0166835
0.50.224756202.0196202
0.60.343445252.5235252
0.70.541253670.0313670
0.80.93687505.0471000
0.92.12374-8989.911000
[1]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[4]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[5]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[6]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[9]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[10]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[11]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[12]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[13]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[20]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (447)
  • HTML views (1368)
  • Cited by (4)

Other articles
by authors

[Back to Top]