[1]
|
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, ASTIN Bulletin, 41 (2011), 645-672.
|
[2]
|
H. Albrecher, E. C. K. Cheung and S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scandinavian Actuarial Journal, 2013 (2013), 424-452.
doi: 10.1080/03461238.2011.624686.
|
[3]
|
H. Albrecher and H. U. Gerber, A note on moments of dividends, Acta Mathematicae Applicatae Sinica, Acta Mathematicae Applicatae Sinica, English Series, 27 (2011), 353-354.
doi: 10.1007/s10255-011-0074-x.
|
[4]
|
H. Albrecher, J. Ivanovs and X. Zhou, Exit identities for Lévy processes observed at Poisson arrival times, Bernoulli, 22 (2016), 1364-1382.
doi: 10.3150/15-BEJ695.
|
[5]
|
H. Albrecher, J.-F. Renaud and X. Zhou, A Lévy insurance risk process with tax, Journal of Applied Probability, 45 (2008), 363-375.
doi: 10.1017/S0021900200004289.
|
[6]
|
S. Asmussen, Applied Probability and Queues, 2nd edition, Springer-Verlag, New York, 2003.
|
[7]
|
S. Asmussen and H. Albrecher, Ruin Probabilities, 2nd edition, World Scientific, New Jersey, 2010.
doi: 10.1142/9789814282536.
|
[8]
|
S. Asmussen, F. Avram and M. Usabel, Erlangian approximations for finite-horizon ruin probabilities, ASTIN Bulletin, 32 (2002), 267-281.
doi: 10.2143/AST.32.2.1029.
|
[9]
|
B. Avanzi, E. C. K. Cheung, B. Wong and J.-K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insurance: Mathematics and Economics, 52 (2013), 98-113.
doi: 10.1016/j.insmatheco.2012.10.008.
|
[10]
|
E. Biffis and M. Morales, On a generalization of the Gerber-Shiu function to path-dependent penalties, Insurance: Mathematics and Economics, 46 (2010), 92-97.
doi: 10.1016/j.insmatheco.2009.08.011.
|
[11]
|
P. Carr, Randomization and the American put, Review of Financial Studies, 11 (1998), 597-626.
|
[12]
|
E. C. K. Cheung, A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium, Insurance: Mathematics and Economics, 48 (2011), 384-397.
doi: 10.1016/j.insmatheco.2011.01.006.
|
[13]
|
E. C. K. Cheung, D. C. M. Dickson and S. Drekic, Moments of discounted dividends for a threshold strategy in the compound Poisson risk model, North American Actuarial Journal, 12 (2008), 299-318.
doi: 10.1080/10920277.2008.10597523.
|
[14]
|
I. Czarna and Z. Palmowski, Ruin probability with Parisian delay for a spectrally negative Lévy risk process, Journal of Applied Probability, 48 (2011), 984-1002.
doi: 10.1017/S0021900200008573.
|
[15]
|
D. C. M. Dickson and C. Hipp, On the time to ruin for Erlang(2) risk processes, Insurance: Mathematics and Economics, 29 (2001), 333-344.
doi: 10.1016/S0167-6687(01)00091-9.
|
[16]
|
D. C. M. Dickson and H. R. Waters, Some optimal dividends problems, ASTIN Bulletin, 34 (2004), 49-74.
doi: 10.2143/AST.34.1.504954.
|
[17]
|
F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance: Mathematics and Economics, 10 (1991), 51-59.
doi: 10.1016/0167-6687(91)90023-Q.
|
[18]
|
R. Feng, A matrix operator approach to the analysis of ruin-related quantities in the phasetype renewal risk model, Bulletin of the Swiss Association of Actuaries, 2009 (2009), 71-87.
|
[19]
|
R. Feng and Y. Shimizu, On a generalization from ruin to default in a Lévy insurance risk model, Methodology and Computing in Applied Probability, 15 (2013), 773-802.
doi: 10.1007/s11009-012-9282-y.
|
[20]
|
H. Furrer, Risk processes perturbed by α-stable Lévy motion, Scandinavian Actuarial Journal, 1998 (1998), 59-74.
doi: 10.1080/03461238.1998.10413992.
|
[21]
|
J. Garrido and M. Morales, On the expected discounted penalty function for Lévy risk processes, North American Actuarial Journal, 10 (2006), 196-218.
doi: 10.1080/10920277.2006.10597421.
|
[22]
|
H. U. Gerber, An Introduction to Mathematical Risk Theory, Huebner Foundation Monograph 8, Richard D. Irwin: Homewood, Illinois, 1979.
|
[23]
|
H. U. Gerber and E. S. W. Shiu, On optimal dividends: From reflection to refraction, Journal of Computational and Applied Mathematics, 186 (2006), 4-22.
doi: 10.1016/j.cam.2005.03.062.
|
[24]
|
H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.
doi: 10.1080/10920277.1998.10595671.
|
[25]
|
H. U. Gerber and E. S. W. Shiu, Optimal dividends: Analysis with Brownian Motion, North American Actuarial Journal, 8 (2004), 1-20.
doi: 10.1080/10920277.2004.10596125.
|
[26]
|
M. Huzak, M. Perman, H. Šikič and Z. Vondraček, Ruin probabilities and decompositions for general perturbed risk processes, Annals of Applied Probability, 14 (2004), 1378-1397.
doi: 10.1214/105051604000000332.
|
[27]
|
A. E. Kyprianou, Fluctuations of Lévy Processes with Applications: Introductory Lectures, 2nd edition, Springer-Verlag, Berlin Heidelberg, 2014.
doi: 10.1007/978-3-642-37632-0.
|
[28]
|
A. E. Kyprianou, Gerber-Shiu Risk Theory, Springer, Cham Heidelberg New York Dordrecht London, 2013. '
doi: 10.1007/978-3-319-02303-8.
|
[29]
|
A. E. Kyprianou and R. L. Loeffen, Refracted Lévy processes, Annales de l'Institut Henri Poincaré -Probabilités et Statistiques, 46 (2010), 24-44.
doi: 10.1214/08-AIHP307.
|
[30]
|
A. E. Kyprianou and Z. Palmowski, Distributional study of De Finetti's dividend problem for a general Lévy insurance risk process, Journal of Applied Probability, 44 (2007), 428-443.
doi: 10.1017/S0021900200117930.
|
[31]
|
A. E. Kyprianou and Z. Palmowski, Fluctuations of spectrally negative Markov additive process, Séminaire de Probabilitiés XLI, Lecture Notes in Mathematics, 1934 (2008), 121-135.
doi: 10.1007/978-3-540-77913-1_5.
|
[32]
|
A. E. Kyprianou and M. R. Pistorius, Perpetual options and Canadization through fluctuation theory, Annals of Applied Probability, 13 (2003), 1077-1098.
doi: 10.1214/aoap/1060202835.
|
[33]
|
A. E. Kyprianou and X. Zhou, General tax structures and the Lévy insurance risk model, Journal of Applied Probability, 46 (2009), 1146-1156.
doi: 10.1017/S0021900200006197.
|
[34]
|
X. S. Lin, G. E. Willmot and S. Drekic, The compound Poisson risk model with a constant dividend barrier: Analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33 (2003), 551-566.
doi: 10.1016/j.insmatheco.2003.08.004.
|
[35]
|
B. G. Lindsay, R. S. Pilla and P. Basak, Moment-based approximations of distributions using mixtures: Theory and applications, Annals of the Institute of Statistical Mathematics, 52 (2000), 215-230.
doi: 10.1023/A:1004105603806.
|
[36]
|
R. Loeffen, I. Czarna and Z. Palmowski, Parisian ruin probability for spectrally negative Lévy processes, Bernoulli, 19 (2013), 599-609.
doi: 10.3150/11-BEJ404.
|
[37]
|
J.-F. Renaud and X. Zhou, Distribution of the present value of dividend payments in a Lévy risk model, Journal of Applied Probability, 44 (2007), 420-427.
doi: 10.1017/S0021900200117929.
|
[38]
|
V. Ramaswami, D. G. Woolford and D. A. Stanford, The Erlangization method for Markovian fluid flows, Annals of Operations Research, 160 (2008), 215-225.
doi: 10.1007/s10479-008-0309-2.
|
[39]
|
Z. B. Salah and M. Morales, Lévy systems and the time value of ruin for Markov additive processes, European Actuarial Journal, 2 (2012), 289-317.
doi: 10.1007/s13385-012-0053-5.
|
[40]
|
H. Schmidli, Distribution of the first ladder height of a stationary risk process perturbed by α-stable Lévy motion, Insurance: Mathematics and Economics, 28 (2001), 13-20.
doi: 10.1016/S0167-6687(00)00062-7.
|
[41]
|
D. A. Stanford, F. Avram, A. L. Badescu, L. Breuer, A. Da Silva Soares and G. Latouche, Phase-type approximations to finite-time ruin probabilities in the Sparre-Anderson and stationary renewal risk models, ASTIN Bulletin, 35 (2005), 131-144.
doi: 10.2143/AST.35.1.583169.
|
[42]
|
D. A. Stanford, K. Yu and J. Ren, Erlangian approximation to finite time ruin probabilities in perturbed risk models, Scandinavian Actuarial Journal, 2011 (2011), 38-58.
doi: 10.1080/03461230903421492.
|
[43]
|
C. C.-L. Tsai and G. E. Willmot, A generalized defective renewal equation for the surplus process perturbed by diffusion, Insurance: Mathematics and Economics, 30 (2002), 51-66.
doi: 10.1016/S0167-6687(01)00096-8.
|
[44]
|
Z. Zhang, On a risk model with randomized dividend-decision times, Journal of Industrial and Management Optimization, 10 (2014), 1041-1058.
doi: 10.3934/jimo.2014.10.1041.
|
[45]
|
Z. Zhang and E. C. K. Cheung, The Markov additive risk process under an Erlangized dividend barrier strategy, Methodology and Computing in Applied Probability, 18 (2016), 275-306.
doi: 10.1007/s11009-014-9414-7.
|
[46]
|
Z. Zhang, C. K. Cheung and H. Yang, Lévy insurance risk process with Poissonian taxation, Scandinavian Actuarial Journal, 2017 (2017), 51-87.
doi: 10.1080/03461238.2015.1062042.
|
[47]
|
Z. Zhang, C. Liu and Y. Yang, On a perturbed compound Poisson model with varying premium rates, Journal of Industrial and Management Optimization, 13 (2017), 721-736.
doi: 10.3934/jimo.2016043.
|