[1]
|
M. Akinlar, Application of a finite element method for variational inequalities, Journal of Inequalities and Applications, 2013 (2013), 6pp.
doi: 10.1186/1029-242X-2013-45.
|
[2]
|
R. Bagatin, J. Klemes, A. Reverberi and D. Huisingh, Conservation and improvements in water resource management: A global challenge, Journal of Cleaner Production, 77 (2014), 1-9.
doi: 10.1016/j.jclepro.2014.04.027.
|
[3]
|
J. Bosch, M. Stoll and P. Benner, Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements, Journal of Computational Physics, 262 (2014), 38-57.
doi: 10.1016/j.jcp.2013.12.053.
|
[4]
|
C. Boehm and M. Ulbrich, A semi-smooth Newton-CG method for constrained parameter identification in seismic tomography, SIAM Journal on Scientific Computing, 37 (2015), 334-364.
doi: 10.1137/140968331.
|
[5]
|
N. Buong and N. Anh, An implicit iteration method for variational inequalities over the set of common fixed points for a finite family of nonexpansive mappings in Hilbert spaces, Fixed Point Theory and Applications, 1 (2011), Art. ID 276859, 10 pp.
|
[6]
|
J. Carey and D. Zilberman, A model of investment under uncertainty: Modern irrigation technology and emerging markets in water, American Journal of Agricultural Economics, 84 (2002), 171-183.
doi: 10.1111/1467-8276.00251.
|
[7]
|
S. Chang, J. Wang and X. Wang, A fitted finite volume method for real option valuation of risks in climate change, Computers and Mathematics with Applications, 70 (2015), 1198-1219.
doi: 10.1016/j.camwa.2015.07.003.
|
[8]
|
S. Chang and X. Wang, Modelling and computation in the valuation of carbon derivatives with stochastic convenience yields, Plos One, 10 (2015), e0125679.
doi: 10.1371/journal.pone.0125679.
|
[9]
|
S. Chang, X. Wang and Z. Wang, Modeling and computation of transboundary industrial pollution with emissions permits trading by stochastic differential game, PLoS ONE, 10 (2015), e0138641.
doi: 10.1371/journal.pone.0138641.
|
[10]
|
L. Chorn and S. Shokhor, Real options for risk management in petrolem development investments, Energy Economics, 28 (2006), 489-505.
|
[11]
|
B. Diomande and A. Zalinescu, Maximum principle for an optimal control problem associated to a stochastic variational inequality with delay, Electronic Journal of Probability, 20 (2014), 1-35.
doi: 10.1214/EJP.v20-2741.
|
[12]
|
A. Dixit and R. Pindyck, Investment under Uncertainty, Princeton University Press, Princeton, 1994.
|
[13]
|
R. France, Exploring the bonds and boundaries of water management in a global context, Journal of Cleaner Production, 60 (2013), 1-3.
doi: 10.1016/j.jclepro.2013.07.004.
|
[14]
|
W. Han and B. Reddy, On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM Journal on Numerical Analysis, 32 (1995), 1778-1807.
doi: 10.1137/0732081.
|
[15]
|
Y. He, Real Options in the Energy Markets, Ph. D Thesis, University of Twente, 2007.
|
[16]
|
C. Huang, C. Hung and S. Wang, A fitted finite volume method for the valuation of options on assets with stochastic volatilities, Computing, 77 (2006), 297-320.
doi: 10.1007/s00607-006-0164-4.
|
[17]
|
C. Huang and S. Wang, A power penalty approach to a nonlinear complementarity problem, Operations Research Letters, 38 (2010), 72-76.
doi: 10.1016/j.orl.2009.09.009.
|
[18]
|
K. Ito and K. Kunisch, Parabolic variational inequalities: The Lagrange multiplier approach, J. Math. Pures Appl., 85 (2006), 415-449.
doi: 10.1016/j.matpur.2005.08.005.
|
[19]
|
L. Kobari, S. Jaimungal and Y. Lawryshyn, A real options model to evaluate the effect of environmental policies on the oil sands rate of expansion, Energy Economics, 45 (2014), 155-165.
doi: 10.1016/j.eneco.2014.06.010.
|
[20]
|
R. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253.
|
[21]
|
J. Liu, L. Mu and X. Ye, An adaptive discontinuous finite volume method for elliptic problems, Journal of Computational and Applied Mathematics, 235 (2011), 5422-5431.
doi: 10.1016/j.cam.2011.05.051.
|
[22]
|
A. McClintock, Investment in Irrigation Technology: Water Use Change, Public Policy and Uncertainty, Cooperative Research Centre for Irrigation Futures, Technical Report, 2014.
|
[23]
|
D. Pimentel, Water resources: Agriculture, the environment, and society, BioScience, 47 (1997), 97-106.
doi: 10.2307/1313020.
|
[24]
|
J. Reyes and K. Kunisch, A semi-smooth Newton method for regularized state-constrained optimal control of the Navier-Stokes Equations, Computing, 78 (2006), 287-309.
doi: 10.1007/s00607-006-0183-1.
|
[25]
|
J. Reyes and M. Hintermuller, A duality based semismooth Newton framework for solving variational inequalities of the second kind, Interfaces and Free Boundaries, 13 (2011), 437-462.
doi: 10.4171/IFB/267.
|
[26]
|
P. Samuelson, Proof that properly anticipated prices fluctuate randomly, The World Scientific Handbook of Futures Markets, 6 (2015), 25-38.
doi: 10.1142/9789814566926_0002.
|
[27]
|
S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA Journal of Numerical Analysis, 24 (2004), 699-720.
doi: 10.1093/imanum/24.4.699.
|
[28]
|
Y. Wang, X. Chang, Z. Chen, Y. Zhong and T. Fan, Impact of subsidy policies on recycling and remanufacturing using system dynamics methodology: a case of auto parts in China, Journal of Cleaner Production, 74 (2014), 161-171.
doi: 10.1016/j.jclepro.2014.03.023.
|
[29]
|
T. Wang and R. Neufville, Building real options into physical systems with stochastic mixed-integer programming, In 8th Annual Real Options International Conference, (2004), 23-32.
|
[30]
|
G. Wang and X. Yang, The regularization method for a degenerate parabolic variational inequality arising from American option valuation, International Journal of Numerical Analysis and Modeling, 5 (2008), 222-238.
|
[31]
|
S. Wang and X. Yang, A power penalty method for linear complementarity problems, Operations Research Letters, 36 (2008), 211-214.
doi: 10.1016/j.orl.2007.06.006.
|
[32]
|
S. Wang, X. Yang and K. Teo, Power penalty method for a linear complementarity problem arising from American option valuation, Journal of Optimization Theory and Applications, 129 (2006), 227-254.
doi: 10.1007/s10957-006-9062-3.
|
[33]
|
S. Wang, S. Zhang and Z. Fang, A superconvergent fitted finite volume method for BlackScholes equations governing European and American option valuation, Numerical Methods for Partial Differential Equations, 31 (2015), 1190-1208.
doi: 10.1002/num.21941.
|
[34]
|
A. Wasylewicz, Analysis of the power penalty method for American options using viscosity solutions, Thesis, University of Oslo, 2008.
|
[35]
|
S. Xie, H. Xu and H. Huang, Some iterative numerical methods for a kind of system of mixed nonlinear variational inequalities, Journal of Mathematics Research, 6 (2014), 65-69.
doi: 10.5539/jmr.v6n1p65.
|
[36]
|
A. Zalinescu, Stochastic variational inequalities with jumps, Stochastic Processes and their Applications, 124 (2014), 785-811.
doi: 10.1016/j.spa.2013.09.005.
|
[37]
|
S. Zhang, X. Wang and A. Shananin, Modeling and computation of mean field equilibria in producers' game with emission permits trading, Communications in Nonlinear Science and Numerical Simulation, 37 (2016), 238-248.
doi: 10.1016/j.cnsns.2016.01.020.
|
[38]
|
K. Zhang, S. Wang, X. Yang and K. Teo, A power penalty approach to numerical solutions of two-asset American options, Numerical Mathematics: Theory, Method and Applications, 2 (2009), 202-233.
|
[39]
|
https://www.ipcc.ch/index.htm.
|
[40]
|
http://www.worldwildlife.org/threats/water-scarcity.
|
[41]
|
https://www.coag.gov.au/sites/default/files/agreements/Murray_Darling_IGA.pdf.
|