January  2018, 14(1): 199-229. doi: 10.3934/jimo.2017043

Neutral and indifference pricing with stochastic correlation and volatility

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Nan-jing Huang

Received  January 2016 Revised  February 2017 Published  April 2017

Fund Project: This work was supported by the National Natural Science Foundation of China (11471230,11671282).

In this paper, we consider a Wishart Affine Stochastic Correlation (WASC) model which accounts for the stochastic volatilities of the assets and for the stochastic correlations not only between the underlying assets' returns but also between their volatilities. Under the assumptions of the model, we derive the neutral and indifference pricing for general European-style financial contracts. The paper shows that comparing to risk-neutral pricing, the utility-based pricing methods are generally feasible and avoid factitiously dealing with some risk premia corresponding to the volatilities-correlations as a consequence of the incompleteness of the market.

Citation: Jia Yue, Nan-Jing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199-229. doi: 10.3934/jimo.2017043
References:
[1]

L. Anderson and J. Andresen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Deriv. Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[2]

N. Bäuerle and Z. J. Li, Optimal portfolios for financial markets with Wishart volatility, J. Appl. Probab., 50 (2013), 1025-1043.  doi: 10.1017/S0021900200013772.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

M. Bru, Wishart process, J. Theoret. Probab., 4 (1991), 725-751.  doi: 10.1007/BF01259552.  Google Scholar

[5]

R. Carmona, Indifference Pricing: Theory and Applications, Princeton University Press, Princeton, 2009.  Google Scholar

[6]

R. Cont and J. D. Fonseca, Dynamics of implied volatility surfaces, Quant. Finance, 2 (2002), 45-60.  doi: 10.1088/1469-7688/2/1/304.  Google Scholar

[7]

M. H. A. DavisV. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM J. Control Optim., 31 (1993), 470-493.  doi: 10.1137/0331022.  Google Scholar

[8]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[9]

J. D. FonsecaM. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework, Rev. Deriv. Res., 10 (2007), 151-180.  doi: 10.1007/s11147-008-9018-x.  Google Scholar

[10]

A. Friedman, Stochastic differential equations, Stochastic Differential Equations and Applications, 1 (1975), 98-127.  doi: 10.1016/B978-0-12-268201-8.50010-4.  Google Scholar

[11]

C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk, Working Paper, Les Cahiers du CREF, 2005. doi: 10.2139/ssrn.757312.  Google Scholar

[12]

M. Grasselli and C. Tebaldi, Solvable affine term structure models, Math. Finance, 18 (2008), 135-153.  doi: 10.1111/j.1467-9965.2007.00325.x.  Google Scholar

[13]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[14]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Rev. Futures Markets, 8 (1989), 222-239.   Google Scholar

[15]

J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, Springer, Berlin, (2002), 313-338.  Google Scholar

[16]

M. Loretan and W. English, Evaluating Correlation Breakdowns During Periods of Market Volatility, Working paper, Board of Governors of the Federal Reserve System International Finance, 2000. doi: 10.2139/ssrn.231857.  Google Scholar

[17]

O. Pfaffel, Wishart processes, available at: arXiv: 1201.3256, 2012. Google Scholar

[18]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89500-8.  Google Scholar

[19]

J. M. Romo, A closed-form solution for outperformance options with stochastic correlation and stochastic volatility, J. Ind. Manag. Optim., 11 (2015), 1185-1209.  doi: 10.3934/jimo.2015.11.1185.  Google Scholar

[20]

B. SolnikC. Boucrelle and Y. L. Fur, International market correlation and volatility, Financ. Analysts J., 52 (1996), 17-34.  doi: 10.2469/faj.v52.n5.2021.  Google Scholar

[21]

S. D. Stojanovic, Optimal momentum hedging via hypoelliptic reduced Monge-Ampère PDEs, SIAM J. Control Optim., 43 (2004), 1151-1173.  doi: 10.1137/S0363012903421170.  Google Scholar

[22]

S. D. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Math., 340 (2005), 551-556.  doi: 10.1016/j.crma.2004.11.002.  Google Scholar

[23]

S. D. Stojanovic, Stochastic Volatility and Risk Premium, Lecture Notes, CARP, New York, 2005. Google Scholar

[24]

S. D. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pac. Financ. Mark., 13 (2006), 345-372.   Google Scholar

[25]

S. D. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011.  Google Scholar

[26]

Y. Z. Zhu and M. Avellaneda, E-arch model for implied volatility term structure of fx options, Quantitative Analysis in Financial Markets, (1999), 277-291.  doi: 10.1142/9789812812599_0011.  Google Scholar

show all references

References:
[1]

L. Anderson and J. Andresen, Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing, Rev. Deriv. Res., 4 (2000), 231-262.  doi: 10.2139/ssrn.171438.  Google Scholar

[2]

N. Bäuerle and Z. J. Li, Optimal portfolios for financial markets with Wishart volatility, J. Appl. Probab., 50 (2013), 1025-1043.  doi: 10.1017/S0021900200013772.  Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

M. Bru, Wishart process, J. Theoret. Probab., 4 (1991), 725-751.  doi: 10.1007/BF01259552.  Google Scholar

[5]

R. Carmona, Indifference Pricing: Theory and Applications, Princeton University Press, Princeton, 2009.  Google Scholar

[6]

R. Cont and J. D. Fonseca, Dynamics of implied volatility surfaces, Quant. Finance, 2 (2002), 45-60.  doi: 10.1088/1469-7688/2/1/304.  Google Scholar

[7]

M. H. A. DavisV. G. Panas and T. Zariphopoulou, European option pricing with transaction costs, SIAM J. Control Optim., 31 (1993), 470-493.  doi: 10.1137/0331022.  Google Scholar

[8]

B. Dupire, Pricing with a smile, Risk, 7 (1994), 18-20.   Google Scholar

[9]

J. D. FonsecaM. Grasselli and C. Tebaldi, Option pricing when correlations are stochastic: An analytical framework, Rev. Deriv. Res., 10 (2007), 151-180.  doi: 10.1007/s11147-008-9018-x.  Google Scholar

[10]

A. Friedman, Stochastic differential equations, Stochastic Differential Equations and Applications, 1 (1975), 98-127.  doi: 10.1016/B978-0-12-268201-8.50010-4.  Google Scholar

[11]

C. Gourieroux and R. Sufana, Derivative Pricing with Multivariate Stochastic Volatility: Application to Credit Risk, Working Paper, Les Cahiers du CREF, 2005. doi: 10.2139/ssrn.757312.  Google Scholar

[12]

M. Grasselli and C. Tebaldi, Solvable affine term structure models, Math. Finance, 18 (2008), 135-153.  doi: 10.1111/j.1467-9965.2007.00325.x.  Google Scholar

[13]

S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327-343.  doi: 10.1093/rfs/6.2.327.  Google Scholar

[14]

S. D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs, Rev. Futures Markets, 8 (1989), 222-239.   Google Scholar

[15]

J. Kallsen, Utility-based derivative pricing in incomplete markets, Mathematical Finance-Bachelier Congress 2000, Springer, Berlin, (2002), 313-338.  Google Scholar

[16]

M. Loretan and W. English, Evaluating Correlation Breakdowns During Periods of Market Volatility, Working paper, Board of Governors of the Federal Reserve System International Finance, 2000. doi: 10.2139/ssrn.231857.  Google Scholar

[17]

O. Pfaffel, Wishart processes, available at: arXiv: 1201.3256, 2012. Google Scholar

[18]

H. Pham, Continuous-time Stochastic Control and Optimization with Financial Applications, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-89500-8.  Google Scholar

[19]

J. M. Romo, A closed-form solution for outperformance options with stochastic correlation and stochastic volatility, J. Ind. Manag. Optim., 11 (2015), 1185-1209.  doi: 10.3934/jimo.2015.11.1185.  Google Scholar

[20]

B. SolnikC. Boucrelle and Y. L. Fur, International market correlation and volatility, Financ. Analysts J., 52 (1996), 17-34.  doi: 10.2469/faj.v52.n5.2021.  Google Scholar

[21]

S. D. Stojanovic, Optimal momentum hedging via hypoelliptic reduced Monge-Ampère PDEs, SIAM J. Control Optim., 43 (2004), 1151-1173.  doi: 10.1137/S0363012903421170.  Google Scholar

[22]

S. D. Stojanovic, Risk premium and fair option prices under stochastic volatility: The HARA solution, C. R. Math., 340 (2005), 551-556.  doi: 10.1016/j.crma.2004.11.002.  Google Scholar

[23]

S. D. Stojanovic, Stochastic Volatility and Risk Premium, Lecture Notes, CARP, New York, 2005. Google Scholar

[24]

S. D. Stojanovic, Pricing and hedging of multi type contracts under multidimensional risks in incomplete markets modeled by general Itô SDE systems, Asia Pac. Financ. Mark., 13 (2006), 345-372.   Google Scholar

[25]

S. D. Stojanovic, Neutral and Indifference Portfolio Pricing, Hedging and Investing, Springer, New York, 2011.  Google Scholar

[26]

Y. Z. Zhu and M. Avellaneda, E-arch model for implied volatility term structure of fx options, Quantitative Analysis in Financial Markets, (1999), 277-291.  doi: 10.1142/9789812812599_0011.  Google Scholar

Figure 1.  Solutions to $F_\gamma$ and F (n = 2)
Figure 2.  Solutions to $F_\gamma$ and F (n = 1)
Figure 3.  Price under different delivery times and positions($\gamma = 0.5$)
Figure 4.  Price under different delivery times and positions($\gamma = 2$)
Figure 5.  Price under different risk-aversion parameters($\kappa_0 = -5,T = 1,\gamma\neq 1$)
Figure 6.  Price under different risk-aversion parameters($\kappa_0 = 5,T = 1,\gamma\neq 1$)
Figure 7.  Price under different risk-aversion parameters($\kappa_0 = -0.01,T = 1,\gamma\neq 1$)
Figure 8.  Price under different risk-aversion parameters($\kappa_0 = 0,T = 1,\gamma\neq 1$)
Figure 9.  Price under different risk-aversion parameters and positions($T = 1$)
[1]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[2]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[3]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[4]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[18]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[19]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[20]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (121)
  • HTML views (587)
  • Cited by (0)

Other articles
by authors

[Back to Top]