Consider a bivariate Lévy-driven risk model in which the loss process of an insurance company and the investment return process are two independent Lévy processes. Under the assumptions that the loss process has a Lévy measure of consistent variation and the return process fulfills a certain condition, we investigate the asymptotic behavior of the finite-time ruin probability. Further, we derive two asymptotic formulas for the finite-time and infinite-time ruin probabilities in a single Lévy-driven risk model, in which the loss process is still a Lévy process, whereas the investment return process reduces to a deterministic linear function. In such a special model, we relax the loss process with jumps whose common distribution is long tailed and of dominated variation.
Citation: |
[1] | N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. doi: 10. 1017/CBO9780511721434. |
[2] | Y. Chen and K. W. Ng, The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims, Insurance Math. Econom., 40 (2007), 415-423. doi: 10.1016/j.insmatheco.2006.06.004. |
[3] | Y. Chen, K. W. Ng and Q. Tang, Weighted sums of subexponential random variables and their maxima, Adv. in Appl. Probab., 37 (2005), 510-522. doi: 10.1017/S0001867800000288. |
[4] | Y. Chen and K. C. Yuen, Sums of pairwise quasi-asymptotically independent random variables with consistent variation, Stoch. Models, 25 (2009), 76-89. doi: 10.1080/15326340802641006. |
[5] | D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Process. Appl., 49 (1994), 75-98. doi: 10.1016/0304-4149(94)90113-9. |
[6] | P. Embrechts, C. Klüppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer-Verlag, Berlin, 1997. doi: 10. 1007/978-3-642-33483-2. |
[7] | S. Foss, D. Korshunov and S. Zachary, An Introduction to Heavy-tailed and Subexponential Distributions, Springer-Verlag, New York, 2011. doi: 10. 1007/978-1-4419-9473-8. |
[8] | A. Frolova, Y. Kabanov and S. Pergamenshchikov, In the insurance business risky investments are dangerous, Finance Stoch., 6 (2002), 227-235. doi: 10.1007/s007800100057. |
[9] | Q. Gao and Y. Wang, Randomly weighted sums with dominated varying-tailed increments and application to risk theory, J. Korean Statist. Society, 39 (2010), 305-314. doi: 10.1016/j.jkss.2010.02.004. |
[10] | H. K. Gjessing and J. Paulsen, Present value distributions with applications to ruin theory and stochastic equations, Stochastic Process. Appl., 71 (1997), 123-144. doi: 10.1016/S0304-4149(97)00072-0. |
[11] | D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations, Ann. Appl. Probab., 4 (1994), 169-183. doi: 10.1214/aoap/1177005205. |
[12] | F. Guo and D. Wang, Finite-and infinite-time ruin probabilities with general stochastic investment return processes and bivariate upper tail independent and heavy-tailed claims, Adv. in Appl. Probab., 45 (2013), 241-273. doi: 10.1017/S0001867800006261. |
[13] | X. Hao and Q. Tang, A uniform asymptotic estimate for discounted aggregate claims with sunexponential tails, Insurance Math. Econom., 43 (2008), 116-120. doi: 10.1016/j.insmatheco.2008.03.009. |
[14] | X. Hao and Q. Tang, Asymptotic ruin probabilities for a bivariate Lévy-driven risk model with heavy-tailed claims and risky investments, J. Appl. Probab., 4 (2012), 939-953. |
[15] | C. C. Heyde and D. Wang, Finite-time ruin probability with an exponential L´evy process investment return and heavy-tailed claims, Adv. in Appl. Probab., 41 (2009), 206-224. doi: 10.1017/S0001867800003190. |
[16] | V. Kalashnikov and D. Konstantinides, Ruin under interest force and subexponential claims: A simple treatment, Insurance Math. Econom., 27 (2000), 145-149. doi: 10.1016/S0167-6687(00)00045-7. |
[17] | V. Kalashnikov and R. Norberg, Power tailed ruin probabilities in the presence of risky investments, Stochastic Process. Appl., 98 (2002), 211-228. doi: 10.1016/S0304-4149(01)00148-X. |
[18] | C. Klüppelberg and R. Kostadinova, Integrated insurance risk models with exponential L´evy investment, Insurance Math. Econom., 42 (2008), 560-577. doi: 10.1016/j.insmatheco.2007.06.002. |
[19] | C. Klüppelberg and U. Stadtmüller, Ruin probabilities in the presence of heavy-tails and interest rates, Scand. Actuar. J., 1 (1998), 49-58. doi: 10.1080/03461238.1998.10413991. |
[20] | D. Konstantinides, Q. Tang and G. Tsitsiashvili, Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails, Insurance Math. Econom., 31 (2002), 447-460. doi: 10.1016/S0167-6687(02)00189-0. |
[21] | J. Li, Asymptotics in a time-dependent renewal risk model with stochastic return, J. Math. Anal. Appl., 387 (2012), 1009-1023. doi: 10.1016/j.jmaa.2011.10.012. |
[22] | J. Paulsen, On Cramér-like asymptotics for risk processes with stochastic return on investments, Ann. Appl. Probab., 12 (2002), 1247-1260. doi: 10.1214/aoap/1037125862. |
[23] | J. Paulsen and H. K. Gjessing, Ruin theory with stochastic return on investments, Adv. in Appl. Probab., 29 (1997), 965-985. doi: 10.1017/S0001867800047972. |
[24] | P. E. Protter, Stochastic Integration and Differential Equations, 2nd edition, Springer-Verlag, Berlin, 2003. doi: 10. 1007/978-3-662-10061-5. |
[25] | G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, New York, 1994. |
[26] | Q. Tang, The finite-time ruin probability of the compound Poisson model with constant interest force, J. Appl. Probab., 42 (2005), 608-619. doi: 10.1017/S0021900200000656. |
[27] | Q. Tang, Heavy tails of discounted aggregate claims in the continuous-time renewal model, J. Appl. Probab., 44 (2007), 285-294. doi: 10.1017/S0021900200117826. |
[28] | Q. Tang and G. Tsitsiashvili, Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks, Stochastic Process. Appl., 108 (2003), 299-325. doi: 10.1016/j.spa.2003.07.001. |
[29] | Q. Tang, G. Wang and K. C. Yuen, Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model, Insurance Math. Econom., 46 (2010), 362-370. doi: 10.1016/j.insmatheco.2009.12.002. |
[30] | Q. Tang and Z. Yuan, Randomly weighted sums of subexponential random variables with application to capital allocation, Extremes, 17 (2014), 467-493. doi: 10.1007/s10687-014-0191-z. |
[31] | W. Vervaat, On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab., 11 (1979), 750-783. doi: 10.2307/1426858. |
[32] | D. Wang, Finite-time ruin probability with heavy-tailed claims and constant interest rate, Stoch. Models, 24 (2008), 41-57. doi: 10.1080/15326340701826898. |
[33] | K. Wang, Y. Wang and Q. Gao, Uniform asymptotics for the finite-time ruin probability of a dependent risk model with a constant interest rate, Methodol. Comput. Appl. Probab., 15 (2013), 109-124. doi: 10.1007/s11009-011-9226-y. |
[34] | Y. Yang, R. Leipus and J. Šiaulys, On the ruin probability in a dependent discrete time risk model with insurance and financial risks, J. Comput. Appl. Math., 236 (2012), 3286-3295. doi: 10.1016/j.cam.2012.02.030. |
[35] | Y. Yang, J. Lin and Z. Tan, The finite-time ruin probability in the presence of Sarmanov dependent financial and insurance risks, Appl. Math. J. Chinese Univ., 29 (2014), 194-204. doi: 10.1007/s11766-014-3209-z. |
[36] | Y. Yang, K. Wang and D. Konstantinides, Uniform asymptotics for discounted aggregate claims in dependent risk models, J. Appl. Probab., 51 (2014), 669-684. doi: 10.1017/S0021900200011591. |
[37] | Y. Yang and Y. Wang, Asymptotics for ruin probability of some negatively dependent risk models with a constant interest rate and dominatedly-varying-tailed claims, Statist. Probab. Letters, 80 (2010), 143-154. doi: 10.1016/j.spl.2009.09.023. |