[1]
|
T. R. Bielecki, H. Q. Jin, S. R. Pliska and X. Y. Zhou, Continuous-time mean-variance portfolio selection with bankruptcy prohibition, Mathematical Finance, 15 (2005), 213-244.
doi: 10.1111/j.0960-1627.2005.00218.x.
|
[2]
|
P. Chen and H. L. Yang, Markowitz's mean-variance asset{liability management with regime switching: A multi-period model, Applied Mathematical Finance, 18 (2011), 29-50.
doi: 10.1080/13504861003703633.
|
[3]
|
M. C. Chiu and D. Li, Asset and liability management under a continuous-time mean-variance optimization framework, Insurance: Mathematics and Economics, 39 (2006), 330-355.
doi: 10.1016/j.insmatheco.2006.03.006.
|
[4]
|
X. Y. Cui, J. J. Gao, X. Li and D. Li, Optimal multiperiod mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040.
|
[5]
|
X. Y. Cui, X. Li and D. Li, Unified framework of mean-field formulations for optimal multi-period mean-variance portfolio selection, IEEE Transactions on Automatic Control, 59 (2014), 1833-1844.
doi: 10.1109/TAC.2014.2311875.
|
[6]
|
E. J. Elton, M. J. Gruber, S. J. Brown and W. N. Goetzmann,
Modern Portfolio Thoery and Investment Analysis, John Wiley & Sons, 2007.
|
[7]
|
C. P. Fu, A. Lari-Lavassani and X. Li, Dynamic mean variance portfolio selection with borrowing constraint, European Journal of Operational Research, 200 (2010), 312-319.
doi: 10.1016/j.ejor.2009.01.005.
|
[8]
|
C. G. Krouse, Portfolio Balancing Corporate Assets and Liabilities with Special Application to InsuranceManagement, The Journal of Financial and Quantitative Analysis, 5 (1970), 77-104.
|
[9]
|
M. Leippold, F. Trojani and P. Vanini, A geometric approach to multiperiod mean variance optimization of assets and liabilities, Journal of Economic Dynamics and Control, 28 (2004), 1079-1113.
doi: 10.1016/S0165-1889(03)00067-8.
|
[10]
|
C. J. Li and Z. F. Li, Multi-period portfolio optimization for asset-liability management with bankrupt control, Applied Mathematics and Computation, 218 (2012), 11196-11208.
doi: 10.1016/j.amc.2012.05.010.
|
[11]
|
D. Li and W.L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100.
|
[12]
|
X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with noshorting constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.
doi: 10.1137/S0363012900378504.
|
[13]
|
Z. F. Li and S. X. Xie, Mean-variance portfolio optimization under stochastic income and uncertain exit time, Dynamics of Continuous, Discrete and Impulsive Systems, 17 (2010), 131-147.
|
[14]
|
H. M. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91.
doi: 10.1111/j.1540-6261.1952.tb01525.x.
|
[15]
|
W. F. Sharpe and L. G. Tint, Liabilities-a new approach, Journal of Portfolio Management, 16 (1990), 5-10.
doi: 10.3905/jpm.1990.409248.
|
[16]
|
S. Z. Wei and Z. X. Ye, Multi-period optimization portfolio with bankruptcy control in stochastic market, Applied Mathematics and Computation, 186 (2007), 414-425.
doi: 10.1016/j.amc.2006.07.108.
|
[17]
|
H. L. Wu and Z. F. Li, Multi-period mean-variance portfolio selection with regime switching and a stochastic cash flow, Insurance: Mathematics and Economics, 50 (2012), 371-384.
doi: 10.1016/j.insmatheco.2012.01.003.
|
[18]
|
H. L. Wu and Y. Zeng, Multi-period mean-variance portfolio selection in a regime-switching market with a bankruptcy state, Optimal Control Applications and Methods, 34 (2013), 415-432.
doi: 10.1002/oca.2027.
|
[19]
|
S. Xie, Z. F. Li and S. Y. Wang, Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach, Insurance: Mathematics and Economics, 42 (2008), 943-953.
doi: 10.1016/j.insmatheco.2007.10.014.
|
[20]
|
L. Yi, Z. F. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon, Journal of Industrial and Management Optimization, 4 (2008), 535-552.
|
[21]
|
L. Yi, X. P. Wu, X. Li and X. Y. Cui, Mean-field formulation for optimal multi-period meanvariance portfolio selection with uncertain exit time, Operations Research Letters, 42 (2014), 489-494.
doi: 10.1016/j.orl.2014.08.007.
|
[22]
|
Y. Zeng and Z. F. Li, Asset-liability management under benchmark and mean-variance criteria in a jump diffusion market, Journal of Systems Science and Complexity, 24 (2011), 317-327.
doi: 10.1007/s11424-011-9105-1.
|
[23]
|
L. Zhang and Z. F. Li, Multi-period mean-varinace portfolio selection with uncertain time horizon when returns are serially correlated,
Mathematical Probelems in Engineering, 2012 (2012), Art. ID 216891, 17 pp.
|
[24]
|
X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003.
|
[25]
|
S. S. Zhu, D. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection:A generalized mean-variance formulation, Automatic Control, IEEE Transactions on, 49 (2004), 447-457.
doi: 10.1109/TAC.2004.824474.
|