• Previous Article
    Is social responsibility for firms competing on quantity evolutionary stable?
  • JIMO Home
  • This Issue
  • Next Article
    Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process
January  2018, 14(1): 309-323. doi: 10.3934/jimo.2017048

On analyzing and detecting multiple optima of portfolio optimization

1. 

China Academy of Corporate Governance & Department of Financial Management, Business School & Collaborative Innovation Center for China Economy, Nankai University, 94 Weijin Road, Tianjin, 300071, China

2. 

Department of Financial Management, Business School, Nankai University, 94 Weijin Road, Tianjin, 300071, China

* Corresponding author: Su Zhang

Received  July 2016 Revised  November 2016 Published  June 2017

Fund Project: The first author is supported by Social Science Grant of the Ministry of Education of China grant 14JJD630007. The third author is supported by National Natural Science Foundation of China grant 11401322 and Fundamental Research Funds for the Central Universities grant NKZXB1447

Portfolio selection is widely recognized as the birth-place of modern finance; portfolio optimization has become a developed tool for portfolio selection by the endeavor of generations of scholars. Multiple optima are an important aspect of optimization. Unfortunately, there is little research for multiple optima of portfolio optimization. We present examples for the multiple optima, emphasize the risk of overlooking the multiple optima by (ordinary) quadratic programming, and report the software failure by parametric quadratic programming. Moreover, we study multiple optima of multiple-objective portfolio selection and prove the nonexistence of the multiple optima of an extension of the model of Merton. This paper can be a step-stone of studying the multiple optima.

Citation: Yue Qi, Zhihao Wang, Su Zhang. On analyzing and detecting multiple optima of portfolio optimization. Journal of Industrial & Management Optimization, 2018, 14 (1) : 309-323. doi: 10.3934/jimo.2017048
References:
[1]

Z. Bodie, A. Kane and A. J. Marcus, Investments, 10th edition, McGraw-Hill/Irwin, Boston, 2013. Google Scholar

[2]

S. P. Boyd and L. Vandenberghe, Convex Optimization, 1st edition, Cambridge University Press, Cambridge, Britain, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 1st edition, Springer Verlag, New York, 1987. doi: 10.1007/978-1-4899-0004-3.  Google Scholar

[4]

V. DeMiguelL. GarlappiF.J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[5]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[6]

D. Disatnik and S. Katz, Portfolio optimization using a block structure for the covariance matrix, Journal of Business Finance & Accounting, 39 (2012), 806-843.   Google Scholar

[7]

P. H. Dybvig, Short sales restrictions and kinks on the mean variance frontier, The Journal of Finance, 39 (1984), 239-244.  doi: 10.1111/j.1540-6261.1984.tb03871.x.  Google Scholar

[8]

M. Ehrgott, Multicriteria Optimization, Volume 491 of Lecture Notes in Economics and Mathematical Systems, 2nd edition, Springer Verlag, Berlin, 2005. doi: 10.1007/978-3-662-22199-0.  Google Scholar

[9]

E. J. Elton, M. J. Gruber, S. J. Brown and W. N. Goetzmann, Modern Portfolio Theory and Investment Analysis, 9th edition, John Wiley & Sons, New York, 2014. Google Scholar

[10]

J. B. Guerard, Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques, Springer, New York, 2010.  Google Scholar

[11]

G. Hadley, Nonlinear and Dynamic Programming, Addison Wesley, Reading, Massachusetts, 1964.  Google Scholar

[12]

F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, Third edition. Holden-Day, Inc., Oakland, Calif., 1980.  Google Scholar

[13]

M. HirschbergerY. Qi and R. E. Steuer, Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming, European Journal of Operational Research, 204 (2010), 581-588.  doi: 10.1016/j.ejor.2009.11.016.  Google Scholar

[14]

C. Huang and R. H. Litzenberger, Foundations for Financial Economics, Prentice Hall, Englewood Cliffs, New Jersey, 1988.  Google Scholar

[15]

B. I. JacobsK. N. Levy and H. M. Markowitz, Portfolio optimization with factors, scenarios, and realistic short positions, Operations Research, 53 (2005), 586-599.  doi: 10.1287/opre.1050.0212.  Google Scholar

[16]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[17]

H. M. Markowitz and A. F. Perold, Portfolio analysis with factors and scenarios, The Journal of Finance, 36 (1981), 871-877.  doi: 10.1111/j.1540-6261.1981.tb04889.x.  Google Scholar

[18]

H. M. Markowitz and G. P. Todd, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Frank J. Fabozzi Associates, New Hope, Pennsylvania, 2000. Google Scholar

[19]

R. C. Merton, An analytical derivation of the efficient portfolio frontier, Journal of Financial and Quantitative Analysis, 7 (1972), 1851-1872.   Google Scholar

[20]

K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1999.  Google Scholar

[21]

Y. QiR. E. Steuer and M. Wimmer, An analytical derivation of the efficient surface in portfolio selection with three criteria, Annals of Operations Research, 251 (2017), 161-177.  doi: 10.1007/s10479-015-1900-y.  Google Scholar

[22]

M. Rubinstein, Markowitz's "portfolio selection": A fifty-year retrospective, The Journal of Finance, 57 (2002), 1041-1045.   Google Scholar

[23]

M. SteinJ. Branke and H. Schmeck, Efficient implementation of an active set algorithm for large-scale portfolio selection, Computers & Operations Research, 35 (2008), 3945-3961.  doi: 10.1016/j.cor.2007.05.004.  Google Scholar

[24]

R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, New York, 1986.  Google Scholar

[25]

R. E. Steuer and P. Na, Multiple criteria decision making combined with finance: A categorized bibliography, European Journal of Operational Research, 150 (2003), 496-515.  doi: 10.1016/S0377-2217(02)00774-9.  Google Scholar

[26]

J. Vörös, The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity, European Journal of Operational Research, 32 (1987), 302-310.  doi: 10.1016/S0377-2217(87)80153-4.  Google Scholar

[27]

J. VörösJ. Kriens and L. W. G. Strijbosch, A note on the kinks at the mean variance frontier, European Journal of Operational Research, 112 (1999), 236-239.   Google Scholar

[28]

P. Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959), 382-398.  doi: 10.2307/1909468.  Google Scholar

[29]

C. ZopounidisE. GalariotisM. DoumposS. Sarri and K. Andriosopoulos, Multiple criteria decision aiding for finance: An updated bibliographic survey, European Journal of Operational Research, 247 (2015), 339-348.  doi: 10.1016/j.ejor.2015.05.032.  Google Scholar

show all references

References:
[1]

Z. Bodie, A. Kane and A. J. Marcus, Investments, 10th edition, McGraw-Hill/Irwin, Boston, 2013. Google Scholar

[2]

S. P. Boyd and L. Vandenberghe, Convex Optimization, 1st edition, Cambridge University Press, Cambridge, Britain, 2004. doi: 10.1017/CBO9780511804441.  Google Scholar

[3]

P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods, 1st edition, Springer Verlag, New York, 1987. doi: 10.1007/978-1-4899-0004-3.  Google Scholar

[4]

V. DeMiguelL. GarlappiF.J. Nogales and R. Uppal, A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms, Management Science, 55 (2009), 798-812.   Google Scholar

[5]

V. DeMiguelL. Garlappi and R. Uppal, Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy?, Review of Financial Studies, 22 (2009), 1915-1953.  doi: 10.1093/acprof:oso/9780199744282.003.0034.  Google Scholar

[6]

D. Disatnik and S. Katz, Portfolio optimization using a block structure for the covariance matrix, Journal of Business Finance & Accounting, 39 (2012), 806-843.   Google Scholar

[7]

P. H. Dybvig, Short sales restrictions and kinks on the mean variance frontier, The Journal of Finance, 39 (1984), 239-244.  doi: 10.1111/j.1540-6261.1984.tb03871.x.  Google Scholar

[8]

M. Ehrgott, Multicriteria Optimization, Volume 491 of Lecture Notes in Economics and Mathematical Systems, 2nd edition, Springer Verlag, Berlin, 2005. doi: 10.1007/978-3-662-22199-0.  Google Scholar

[9]

E. J. Elton, M. J. Gruber, S. J. Brown and W. N. Goetzmann, Modern Portfolio Theory and Investment Analysis, 9th edition, John Wiley & Sons, New York, 2014. Google Scholar

[10]

J. B. Guerard, Handbook of Portfolio Construction: Contemporary Applications of Markowitz Techniques, Springer, New York, 2010.  Google Scholar

[11]

G. Hadley, Nonlinear and Dynamic Programming, Addison Wesley, Reading, Massachusetts, 1964.  Google Scholar

[12]

F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, Third edition. Holden-Day, Inc., Oakland, Calif., 1980.  Google Scholar

[13]

M. HirschbergerY. Qi and R. E. Steuer, Large-scale MV efficient frontier computation via a procedure of parametric quadratic programming, European Journal of Operational Research, 204 (2010), 581-588.  doi: 10.1016/j.ejor.2009.11.016.  Google Scholar

[14]

C. Huang and R. H. Litzenberger, Foundations for Financial Economics, Prentice Hall, Englewood Cliffs, New Jersey, 1988.  Google Scholar

[15]

B. I. JacobsK. N. Levy and H. M. Markowitz, Portfolio optimization with factors, scenarios, and realistic short positions, Operations Research, 53 (2005), 586-599.  doi: 10.1287/opre.1050.0212.  Google Scholar

[16]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.  doi: 10.1111/j.1540-6261.1952.tb01525.x.  Google Scholar

[17]

H. M. Markowitz and A. F. Perold, Portfolio analysis with factors and scenarios, The Journal of Finance, 36 (1981), 871-877.  doi: 10.1111/j.1540-6261.1981.tb04889.x.  Google Scholar

[18]

H. M. Markowitz and G. P. Todd, Mean-Variance Analysis in Portfolio Choice and Capital Markets, Frank J. Fabozzi Associates, New Hope, Pennsylvania, 2000. Google Scholar

[19]

R. C. Merton, An analytical derivation of the efficient portfolio frontier, Journal of Financial and Quantitative Analysis, 7 (1972), 1851-1872.   Google Scholar

[20]

K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Publishers, Boston, 1999.  Google Scholar

[21]

Y. QiR. E. Steuer and M. Wimmer, An analytical derivation of the efficient surface in portfolio selection with three criteria, Annals of Operations Research, 251 (2017), 161-177.  doi: 10.1007/s10479-015-1900-y.  Google Scholar

[22]

M. Rubinstein, Markowitz's "portfolio selection": A fifty-year retrospective, The Journal of Finance, 57 (2002), 1041-1045.   Google Scholar

[23]

M. SteinJ. Branke and H. Schmeck, Efficient implementation of an active set algorithm for large-scale portfolio selection, Computers & Operations Research, 35 (2008), 3945-3961.  doi: 10.1016/j.cor.2007.05.004.  Google Scholar

[24]

R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley & Sons, New York, 1986.  Google Scholar

[25]

R. E. Steuer and P. Na, Multiple criteria decision making combined with finance: A categorized bibliography, European Journal of Operational Research, 150 (2003), 496-515.  doi: 10.1016/S0377-2217(02)00774-9.  Google Scholar

[26]

J. Vörös, The explicit derivation of the efficient portfolio frontier in the case of degeneracy and general singularity, European Journal of Operational Research, 32 (1987), 302-310.  doi: 10.1016/S0377-2217(87)80153-4.  Google Scholar

[27]

J. VörösJ. Kriens and L. W. G. Strijbosch, A note on the kinks at the mean variance frontier, European Journal of Operational Research, 112 (1999), 236-239.   Google Scholar

[28]

P. Wolfe, The simplex method for quadratic programming, Econometrica, 27 (1959), 382-398.  doi: 10.2307/1909468.  Google Scholar

[29]

C. ZopounidisE. GalariotisM. DoumposS. Sarri and K. Andriosopoulos, Multiple criteria decision aiding for finance: An updated bibliographic survey, European Journal of Operational Research, 247 (2015), 339-348.  doi: 10.1016/j.ejor.2015.05.032.  Google Scholar

Figure 1.  A feasible region Z of portfolio selection
Figure 2.  The S, E, Z, and N of the example in subsection 3.1
Figure 4.  The Z and N of the example in subsection 3.2
Figure 3.  Incorrectly approximating the N of the example in subsection 3.1 by the major style of portfolio optimization
Figure 5.  Incorrectly approximating the N of the example in subsection 3.2 by the major style of portfolio optimization
Figure 6.  The Z and N of the generalization of the example in subsection 3.2
[1]

Yanqin Bai, Chuanhao Guo. Doubly nonnegative relaxation method for solving multiple objective quadratic programming problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 543-556. doi: 10.3934/jimo.2014.10.543

[2]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[3]

Ram U. Verma. General parametric sufficient optimality conditions for multiple objective fractional subset programming relating to generalized $(\rho,\eta,A)$ -invexity. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 333-339. doi: 10.3934/naco.2011.1.333

[4]

Tadeusz Antczak, Najeeb Abdulaleem. Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019089

[5]

Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926

[6]

Francisco Odair de Paiva. Multiple solutions for a class of quasilinear problems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 669-680. doi: 10.3934/dcds.2006.15.669

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Jiawei Chen, Guangmin Wang, Xiaoqing Ou, Wenyan Zhang. Continuity of solutions mappings of parametric set optimization problems. Journal of Industrial & Management Optimization, 2020, 16 (1) : 25-36. doi: 10.3934/jimo.2018138

[9]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial & Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[10]

Ji Li, Tie Zhou. Numerical optimization algorithms for wavefront phase retrieval from multiple measurements. Inverse Problems & Imaging, 2017, 11 (4) : 721-743. doi: 10.3934/ipi.2017034

[11]

Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial & Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1

[12]

Rumei Zhang, Jin Chen, Fukun Zhao. Multiple solutions for superlinear elliptic systems of Hamiltonian type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1249-1262. doi: 10.3934/dcds.2011.30.1249

[13]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear coercive Neumann problems. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1957-1974. doi: 10.3934/cpaa.2009.8.1957

[14]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[15]

Franco Obersnel, Pierpaolo Omari. Multiple bounded variation solutions of a capillarity problem. Conference Publications, 2011, 2011 (Special) : 1129-1137. doi: 10.3934/proc.2011.2011.1129

[16]

Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721

[17]

Monica Musso, Donato Passaseo. Multiple solutions of Neumann elliptic problems with critical nonlinearity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 301-320. doi: 10.3934/dcds.1999.5.301

[18]

Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024

[19]

John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 83-90. doi: 10.3934/proc.2003.2003.83

[20]

Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (63)
  • HTML views (609)
  • Cited by (0)

Other articles
by authors

[Back to Top]