
-
Previous Article
An iterative algorithm for periodic sylvester matrix equations
- JIMO Home
- This Issue
-
Next Article
Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs
A modified strictly contractive peaceman-rachford splitting method for multi-block separable convex programming
School of Management and Engineering, Nanjing University, Nanjing 210093, China |
We propose a modified splitting method for a linearly constrained minimization model whose objective function is the sum of three convex functions without coupled variables. Our work is mainly inspired by the recently proposed strictly contractive Peaceman-Rachford splitting method (SC-PRSM) for a two-block separable convex minimization model. For the new method, we prove its convergence and estimate its convergence rates measured by iteration complexity in the nonergodic sense. We also test the SC-PRSM on the continuous resource allocation problem, and the numerical results show that our method has a competitive performance with the direct extension of ADMM which usually works well in practice but may fail to converge in theory.
References:
[1] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
|
[2] |
X. J. Cai, D. R. Han and X. M. Yuan,
On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, Computational Optimization and Applications, 66 (2017), 39-73.
doi: 10.1007/s10589-016-9860-y. |
[3] |
C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming Ser. A, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[4] |
C. H. Chen, Y. Shen and Y. F. You, On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis, (2013), Article ID 183961, 7 pages. |
[5] |
E. Corman and X. M. Yuan,
A generalized proximal point algorithm and its convergence rate, SIAM Journal on Optimization, 24 (2014), 1614-1638.
doi: 10.1137/130940402. |
[6] |
Y. H. Dai, D. R. Han, X. M. Yuan and W. X. Zhang,
A sequential updating scheme of the Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104. |
[7] |
W. Deng, M.-J. Lai, Z. M. Peng and W. T. Yin,
Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing, 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2. |
[8] |
J. Douglas and H. H. Rachford,
On the numerical solution of the heat conduction problem in $2$ and $3$ space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4. |
[9] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems (eds. M. Fortin and R. Glowinski), North Holland, Amsterdam, The Netherlands, (1983), 299-331. |
[10] |
R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods, in Numerical Methods for Scientific Computing, Variational Problems and Applications (eds. Y. Kuznetsov, P. Neittanmaki and O. Pironneau), Barcelona, (2003). |
[11] |
R. Glowinski and A. Marrocco,
Approximation par $\acute{e}$l$\acute{e}$ments finis d'ordre un et r$\acute{e}$solution par p$\acute{e}$nalisation-dualit$\acute{e}$ d'une classe de probl$\grave{e}$mes non lin$\acute{e}$aires, R.A.I.R.O., 9 (1975), 41-76.
|
[12] |
D. R. Han, X. M Yuan, W. X. Zhang and X. J. Cai,
An ADM-based splitting method for separable convex programming, Computational Optimization and Applications, 54 (2013), 343-369.
doi: 10.1007/s10589-012-9510-y. |
[13] |
B. S. He, H. Liu, J. W. Lu and X. M. Yuan, Application of the strictly contractive PeacemanRachford splitting method to multi-block seperable convex programming, manuscript, in Splitting Methods in Communication and Imaging, Science, and Engineering (eds. R. Glowinski, S. Osher and W. Yin), Springer, Switzerland, (2016), 195-235. |
[14] |
B. S. He, H. Liu, Z. R. Wang and X. M. Yuan,
A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM Journal on Optimization, 24 (2014), 1101-1140.
doi: 10.1137/13090849X. |
[15] |
B. S. He, M. Tao and X. M. Yuan,
A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 35 (2015), 394-426.
doi: 10.1093/imanum/drt060. |
[16] |
B. S. He, M. Tao and X. M. Yuan,
Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347. |
[17] |
B. S. He and X. M. Yuan,
On the O(1/n) convergence rate of Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936. |
[18] |
B. S. He and X. M. Yuan,
On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numerische Mathematik, 30 (2015), 567-577.
doi: 10.1007/s00211-014-0673-6. |
[19] |
M. Li, D. F. Sun and K. -C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia Pacific Journal of Operational Research, 32 (2015), 1550024, 19 pp.
doi: 10.1142/S0217595915500244. |
[20] |
X. D. Li, D. F. Sun and K.-C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming Ser. A, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[21] |
T. Y. Lin, S. Q. Ma and S. Z. Zhang,
On the global linear convergence of the ADMM with multi-block variables, SIAM Journal on Optimization, 25 (2015), 1478-1497.
doi: 10.1137/140971178. |
[22] |
T. Y. Lin, S. Q. Ma and S. Z. Zhang,
On the sublinear convergence rate of multi-block {ADMM}, Journal of the Operations Research Society of China, 3 (2015), 251-274.
doi: 10.1007/s40305-015-0092-0. |
[23] |
P. L. Lions and B. Mercier,
Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.
doi: 10.1137/0716071. |
[24] |
S. Q. Ma,
Alternating proximal gradient method for convex minimization, Journal of Scientific Computing, 68 (2016), 546-572.
doi: 10.1007/s10915-015-0150-0. |
[25] |
Y. E. Nesterov,
Gradient methods for minimizing composite objective function, Mathematical Programming Ser. B, 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5. |
[26] |
M. Patriksson,
A survey on the continuous nonlinear resource allocation Problem, European Journal of Operations Research, 185 (2008), 1-46.
doi: 10.1016/j.ejor.2006.12.006. |
[27] |
D. H. Peaceman and H. H. Rachford,
The numerical solution of parabolic elliptic differential equations, SIAM Journal on Applied Mathematics, 3 (1955), 28-41.
doi: 10.1137/0103003. |
[28] |
Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu and Y. Ma,
Robust alignment by sparse and low-rank decomposition for linearly correlated images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2233-2246.
doi: 10.1109/CVPR.2010.5540138. |
[29] |
M. Tao and X. M. Yuan,
Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 57-81.
doi: 10.1137/100781894. |
[30] |
H. Uzawa,
Market mechanisms and mathematical programming, Econometrica, 28 (1960), 872-881.
doi: 10.2307/1907569. |
show all references
References:
[1] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
|
[2] |
X. J. Cai, D. R. Han and X. M. Yuan,
On the convergence of the direct extension of ADMM for three-block separable convex minimization models with one strongly convex function, Computational Optimization and Applications, 66 (2017), 39-73.
doi: 10.1007/s10589-016-9860-y. |
[3] |
C. H. Chen, B. S. He, Y. Y. Ye and X. M. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming Ser. A, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[4] |
C. H. Chen, Y. Shen and Y. F. You, On the convergence analysis of the alternating direction method of multipliers with three blocks. Abstract and Applied Analysis, (2013), Article ID 183961, 7 pages. |
[5] |
E. Corman and X. M. Yuan,
A generalized proximal point algorithm and its convergence rate, SIAM Journal on Optimization, 24 (2014), 1614-1638.
doi: 10.1137/130940402. |
[6] |
Y. H. Dai, D. R. Han, X. M. Yuan and W. X. Zhang,
A sequential updating scheme of the Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104. |
[7] |
W. Deng, M.-J. Lai, Z. M. Peng and W. T. Yin,
Parallel multi-block ADMM with o(1/k) convergence, Journal of Scientific Computing, 71 (2017), 712-736.
doi: 10.1007/s10915-016-0318-2. |
[8] |
J. Douglas and H. H. Rachford,
On the numerical solution of the heat conduction problem in $2$ and $3$ space variables, Transactions of the American Mathematical Society, 82 (1956), 421-439.
doi: 10.1090/S0002-9947-1956-0084194-4. |
[9] |
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems (eds. M. Fortin and R. Glowinski), North Holland, Amsterdam, The Netherlands, (1983), 299-331. |
[10] |
R. Glowinski, T. Kärkkäinen and K. Majava, On the convergence of operator-splitting methods, in Numerical Methods for Scientific Computing, Variational Problems and Applications (eds. Y. Kuznetsov, P. Neittanmaki and O. Pironneau), Barcelona, (2003). |
[11] |
R. Glowinski and A. Marrocco,
Approximation par $\acute{e}$l$\acute{e}$ments finis d'ordre un et r$\acute{e}$solution par p$\acute{e}$nalisation-dualit$\acute{e}$ d'une classe de probl$\grave{e}$mes non lin$\acute{e}$aires, R.A.I.R.O., 9 (1975), 41-76.
|
[12] |
D. R. Han, X. M Yuan, W. X. Zhang and X. J. Cai,
An ADM-based splitting method for separable convex programming, Computational Optimization and Applications, 54 (2013), 343-369.
doi: 10.1007/s10589-012-9510-y. |
[13] |
B. S. He, H. Liu, J. W. Lu and X. M. Yuan, Application of the strictly contractive PeacemanRachford splitting method to multi-block seperable convex programming, manuscript, in Splitting Methods in Communication and Imaging, Science, and Engineering (eds. R. Glowinski, S. Osher and W. Yin), Springer, Switzerland, (2016), 195-235. |
[14] |
B. S. He, H. Liu, Z. R. Wang and X. M. Yuan,
A strictly contractive Peaceman-Rachford splitting method for convex programming, SIAM Journal on Optimization, 24 (2014), 1101-1140.
doi: 10.1137/13090849X. |
[15] |
B. S. He, M. Tao and X. M. Yuan,
A splitting method for separable convex programming, IMA Journal of Numerical Analysis, 35 (2015), 394-426.
doi: 10.1093/imanum/drt060. |
[16] |
B. S. He, M. Tao and X. M. Yuan,
Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347. |
[17] |
B. S. He and X. M. Yuan,
On the O(1/n) convergence rate of Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936. |
[18] |
B. S. He and X. M. Yuan,
On nonergodic convergence rate of Douglas-Rachford alternating direction method of multipliers, Numerische Mathematik, 30 (2015), 567-577.
doi: 10.1007/s00211-014-0673-6. |
[19] |
M. Li, D. F. Sun and K. -C. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia Pacific Journal of Operational Research, 32 (2015), 1550024, 19 pp.
doi: 10.1142/S0217595915500244. |
[20] |
X. D. Li, D. F. Sun and K.-C. Toh,
A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming Ser. A, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[21] |
T. Y. Lin, S. Q. Ma and S. Z. Zhang,
On the global linear convergence of the ADMM with multi-block variables, SIAM Journal on Optimization, 25 (2015), 1478-1497.
doi: 10.1137/140971178. |
[22] |
T. Y. Lin, S. Q. Ma and S. Z. Zhang,
On the sublinear convergence rate of multi-block {ADMM}, Journal of the Operations Research Society of China, 3 (2015), 251-274.
doi: 10.1007/s40305-015-0092-0. |
[23] |
P. L. Lions and B. Mercier,
Splitting algorithms for the sum of two nonlinear operators, SIAM Journal on Numerical Analysis, 16 (1979), 964-979.
doi: 10.1137/0716071. |
[24] |
S. Q. Ma,
Alternating proximal gradient method for convex minimization, Journal of Scientific Computing, 68 (2016), 546-572.
doi: 10.1007/s10915-015-0150-0. |
[25] |
Y. E. Nesterov,
Gradient methods for minimizing composite objective function, Mathematical Programming Ser. B, 140 (2013), 125-161.
doi: 10.1007/s10107-012-0629-5. |
[26] |
M. Patriksson,
A survey on the continuous nonlinear resource allocation Problem, European Journal of Operations Research, 185 (2008), 1-46.
doi: 10.1016/j.ejor.2006.12.006. |
[27] |
D. H. Peaceman and H. H. Rachford,
The numerical solution of parabolic elliptic differential equations, SIAM Journal on Applied Mathematics, 3 (1955), 28-41.
doi: 10.1137/0103003. |
[28] |
Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu and Y. Ma,
Robust alignment by sparse and low-rank decomposition for linearly correlated images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34 (2012), 2233-2246.
doi: 10.1109/CVPR.2010.5540138. |
[29] |
M. Tao and X. M. Yuan,
Recovering low-rank and sparse components of matrices from incomplete and noisy observations, SIAM Journal on Optimization, 21 (2011), 57-81.
doi: 10.1137/100781894. |
[30] |
H. Uzawa,
Market mechanisms and mathematical programming, Econometrica, 28 (1960), 872-881.
doi: 10.2307/1907569. |

Name | Parameters | |
Linear cost | ||
Power cost | ||
Piecewise quadratic cost |
Name | Parameters | |
Linear cost | ||
Power cost | ||
Piecewise quadratic cost |
[1] |
Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial and Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067 |
[2] |
Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial and Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078 |
[3] |
Yaonan Ma, Li-Zhi Liao. The Glowinski–Le Tallec splitting method revisited: A general convergence and convergence rate analysis. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1681-1711. doi: 10.3934/jimo.2020040 |
[4] |
Leyu Hu, Xingju Cai. Convergence of a randomized Douglas-Rachford method for linear system. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 463-474. doi: 10.3934/naco.2020045 |
[5] |
Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199 |
[6] |
Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic and Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1 |
[7] |
Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013 |
[8] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[9] |
Sedighe Asghariniya, Hamed Zhiani Rezai, Saeid Mehrabian. Resource allocation: A common set of weights model. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 257-273. doi: 10.3934/naco.2020001 |
[10] |
Irina Kareva, Faina Berezovkaya, Georgy Karev. Mixed strategies and natural selection in resource allocation. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1561-1586. doi: 10.3934/mbe.2013.10.1561 |
[11] |
Jian Gu, Xiantao Xiao, Liwei Zhang. A subgradient-based convex approximations method for DC programming and its applications. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1349-1366. doi: 10.3934/jimo.2016.12.1349 |
[12] |
Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure and Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835 |
[13] |
Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics and Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009 |
[14] |
Jafar Sadeghi, Mojtaba Ghiyasi, Akram Dehnokhalaji. Resource allocation and target setting based on virtual profit improvement. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 127-142. doi: 10.3934/naco.2019043 |
[15] |
Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025 |
[16] |
Shuang Zhao. Resource allocation flowshop scheduling with learning effect and slack due window assignment. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2817-2835. doi: 10.3934/jimo.2020096 |
[17] |
Ji-Bo Wang, Dan-Yang Lv, Shi-Yun Wang, Chong Jiang. Resource allocation scheduling with deteriorating jobs and position-dependent workloads. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022011 |
[18] |
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 |
[19] |
Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247 |
[20] |
Yang Li, Yonghong Ren, Yun Wang, Jian Gu. Convergence analysis of a nonlinear Lagrangian method for nonconvex semidefinite programming with subproblem inexactly solved. Journal of Industrial and Management Optimization, 2015, 11 (1) : 65-81. doi: 10.3934/jimo.2015.11.65 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]