# American Institute of Mathematical Sciences

• Previous Article
Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method
• JIMO Home
• This Issue
• Next Article
Ebola model and optimal control with vaccination constraints
April  2018, 14(2): 447-472. doi: 10.3934/jimo.2017055

## The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty

 1 Av. Pedro de Alba, San Nicolás de los Garza, NL 66450, México, PhD Student in Program for Economy and Enterprise at the University of Málaga 2 Universidad Autónoma de Nuevo León, Av. Pedro de Alba, San Nicolás de los Garza, NL 66450, México 3 Universidad de Málaga, Campus El Ejido S/N, Málaga, 29071, España

* Corresponding author: Paulina Avila-Torres

Received  January 2016 Revised  November 2016 Published  June 2017

Fund Project: CONACyT, AUIP, DoA, Spanish MINECO and Andalucia Goverment

The urban transport planning process has four main activities: Network design, Timetable construction, Vehicle scheduling and Crew scheduling; each activity has subactivities. In this paper the authors work with the subactivities of timetable construction: minimal frequency calculation and departure time scheduling. The authors propose to solve both subactivities in an integrated way. The developed mathematical model allows multi-period planning and it can also be used for multimodal urban transportation systems. The authors consider demand uncertainty and the authors employ fuzzy programming to solve the problem. The authors formulate the urban transportation timetabling construction problem as a bi-objective problem: to minimize the total operational cost and to maximize the number of multi-period synchronizations. Finally, the authors implemented the SAUGMECON method to solve the problem.

Citation: Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055
##### References:

show all references

##### References:
Transport planning process [5]
Departure times[5]
Types of synchronization nodes [13]
Multiperiod Scheduling Urban Transportation Problem. $S_{h}$ is the scheduling horizon, $T^v$ are the time periods. In each $T^v$ demand is considered almost constant
Differences of how to represent departures
First departure
Consecutive departure
Last departure
Flowchart to determine the frequency [5]
Window time for synchronization
Correlation
Execution time effect
Cost vs. Synchronization (Instance 20)
Cost vs. Synchronization (Instance 24)
Cost behaviour in relation to instance parameters
Synchronizations behaviour in relation to instance parameters
Literature review
 Authors Frequency Transfer nodes Bunching nodes Cost Multimodal Uncertain Demand Multiperiod Integration Chen et al. x x x Chakroborty x x x Zhao & Zeng x x x Szeto & Wu x x Hadas & Shnaiderman x x x Baskaran & Krishnaiah x x x Tilahun & Ong x x Liu et al. x x Zhang et al. x x Wang et al. x x Eranki x Ibarra-Rojas et al. x x x Avila et al. x x x x x x x x
 Authors Frequency Transfer nodes Bunching nodes Cost Multimodal Uncertain Demand Multiperiod Integration Chen et al. x x x Chakroborty x x x Zhao & Zeng x x x Szeto & Wu x x Hadas & Shnaiderman x x x Baskaran & Krishnaiah x x x Tilahun & Ong x x Liu et al. x x Zhang et al. x x Wang et al. x x Eranki x Ibarra-Rojas et al. x x x Avila et al. x x x x x x x x
Characteristics of instances
 Parameter Low level High level Routes 8 20 Periods 2 12 Segments 10 150 Sync. nodes 2 12 Headways 5-10 5-20
 Parameter Low level High level Routes 8 20 Periods 2 12 Segments 10 150 Sync. nodes 2 12 Headways 5-10 5-20
 [1] Dariush Mohamadi Zanjirani, Majid Esmaelian. An integrated approach based on Fuzzy Inference System for scheduling and process planning through multiple objectives. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-25. doi: 10.3934/jimo.2018202 [2] Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403 [3] Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567 [4] Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems & Imaging, 2011, 5 (1) : 37-57. doi: 10.3934/ipi.2011.5.37 [5] José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415 [6] Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial & Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581 [7] Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082 [8] Peng Zhang. Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection. Journal of Industrial & Management Optimization, 2019, 15 (2) : 537-564. doi: 10.3934/jimo.2018056 [9] Zhongbao Zhou, Ximei Zeng, Helu Xiao, Tiantian Ren, Wenbin Liu. Multiperiod portfolio optimization for asset-liability management with quadratic transaction costs. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1493-1515. doi: 10.3934/jimo.2018106 [10] Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699 [11] Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118 [12] Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619 [13] Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847 [14] Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669 [15] Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008 [16] Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117 [17] Wei Wang, Xiao-Long Xin. On fuzzy filters of Heyting-algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1611-1619. doi: 10.3934/dcdss.2011.4.1611 [18] Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 [19] Peng Zhang. Multiperiod mean semi-absolute deviation interval portfolio selection with entropy constraints. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1169-1187. doi: 10.3934/jimo.2016067 [20] Sanyi Tang, Lansun Chen. Modelling and analysis of integrated pest management strategy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 759-768. doi: 10.3934/dcdsb.2004.4.759

2018 Impact Factor: 1.025

## Tools

Article outline

Figures and Tables