April  2018, 14(2): 583-596. doi: 10.3934/jimo.2017061

LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback

1. 

Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet Road, Hanoi, Vietnam

2. 

Institute of Mathematics, VAST, 18 Hoang Quoc Viet Road, Hanoi, Vietnam

Received  October 2016 Revised  January 2017 Published  June 2017

This paper deals with the exponential stabilization problem by means of memory state feedback controller for linear singular positive systems with delay. By using system decomposition approach, singular systems theory and Lyapunov function method, we obtain new delay-dependent sufficient conditions for designing such controllers. The conditions are given in terms of standard linear programming (LP) problems, which can be solved by LP optimal toolbox. A numerical example is given to illustrate the effectiveness of the proposed method.

Citation: Nguyen H. Sau, Vu N. Phat. LP approach to exponential stabilization of singular linear positive time-delay systems via memory state feedback. Journal of Industrial & Management Optimization, 2018, 14 (2) : 583-596. doi: 10.3934/jimo.2017061
References:
[1]

H. Arneson and C. Langbort, A linear programming approach to routing control in networks of constrained linear positive systems, Automatica, 48 (2012), 800-807.   Google Scholar

[2]

E. K. Boukas and Y. Xia, Descriptor discrete-time systems with random abrupt changes: Stability and stabilisation, International Journal of Control, 81 (2008), 1311-1318.  doi: 10.1080/00207170701769822.  Google Scholar

[3]

R. Bru and S. Romero-Vivo, Positive Systems, Lecture Notes in Control and Information Sciences, vol. 389, Berlin: Springer, 2009. doi: 10.1007/978-3-642-02894-6.  Google Scholar

[4]

S. L. V. Campbell, Singular Systems of Differential Equations, Boston, Mass. -London, 1980.  Google Scholar

[5]

L. Dai, Singular Control Systems, Berlin: Springer, 1989. doi: 10.1007/BFb0002475.  Google Scholar

[6]

Y. EbiharaD. Peaucelle and D. Arzelier, LMI approach to linear positive system analysis and synthesis, Systems & Control Letters, 63 (2014), 50-56.  doi: 10.1016/j.sysconle.2013.11.001.  Google Scholar

[7]

D. EfimovA. Polyakov and J. P. Richard, Interval observer design for estimation and control of time-delay descriptor systems, European Journal of Control, 23 (2015), 26-35.  doi: 10.1016/j.ejcon.2015.01.004.  Google Scholar

[8]

H. FanJ.-E. Feng and M. Meng, Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays, Journal of Industrial and Management Optimization, 12 (2016), 1535-1556.  doi: 10.3934/jimo.2016.12.1535.  Google Scholar

[9]

L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, New York: Wiley-Interscience, 2000. doi: 10.1002/9781118033029.  Google Scholar

[10]

A. Ilchmann and P. H. A. Ngoc, On positivity and stability of linear time-varying Volterra equations, Positivity, 13 (2009), 671-681.   Google Scholar

[11]

T. Kaczorek, Positive 1-D and 2-D Systems, Berlin: Springer, 2002. Google Scholar

[12]

J. Lam and S. Xu, Robust Control and Filtering of Singular Systems, Berlin: Springer, 2006.  Google Scholar

[13]

X. Liu, Constrained control of positive systems with delays, IEEE Transactions on Automatic Control, 54 (2009), 1596-1600.  doi: 10.1109/TAC.2009.2017961.  Google Scholar

[14]

I. Malloci and J. Daafouz, Stabilisation of polytopic singularly perturbed linear systems, International Journal of Control, 85 (2012), 135-142.  doi: 10.1080/00207179.2011.641128.  Google Scholar

[15]

Y. S. MoonP. Park and W. H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method, Automatica, 37 (2001), 307-312.  doi: 10.1016/S0005-1098(00)00145-X.  Google Scholar

[16]

V. N. Phat and N. H. Sau, On exponential stability of linear singular positive delayed systems, Applied Mathematics Letters, 38 (2014), 67-72.  doi: 10.1016/j.aml.2014.07.003.  Google Scholar

[17]

M. A. Rami, Solvability of static output-feedback stabilization for LTI positive systems, Systms & Control Letters, 60 (2011), 704-708.  doi: 10.1016/j.sysconle.2011.05.007.  Google Scholar

[18]

M. A. RamiF. Tadeo and U. Helmke, Positive observers for linear positive systems, and their implications, International Journal of Control, 84 (2011), 716-725.   Google Scholar

[19]

L. F. Shampine and P. Gahinet, Delay differential-algebraic equations in control theory, Applied Numerical Mathematics, 56 (2006), 574-588.   Google Scholar

[20]

Z. Shu and J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, International Journal of Control,, 81 (2008), 865-882.  doi: 10.1080/00207170701261986.  Google Scholar

[21]

R. J. Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations Research & Management Science, vol. 37,2001. doi: 10.1007/978-1-4757-5662-3.  Google Scholar

[22]

S. XuP. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, 47 (2002), 1122-1128.  doi: 10.1109/TAC.2002.800651.  Google Scholar

[23]

L. ZhangJ. Lam and S. Xu, On positive realness of descriptor systems, IEEE Transactions on Circuits Systems I, Fundamental Theory & Applications, 49 (2002), 401-407.   Google Scholar

[24]

Y. ZhangQ. ZhangT. Tanaka and X. G. Yan, Positivity of continuous-time descriptor systems with time delays, IEEE Trans Auto. Contr., 59 (2014), 3093-3097.   Google Scholar

[25]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21.  doi: 10.3934/jimo.2016001.  Google Scholar

[26]

B. ZhouJ. Hu and G. Duan, Strict linear matrix inequality characterization of positive realness for linear discrete-time descriptor systems, IET Control Theory & Applications, 7 (2010), 1277-1281.   Google Scholar

[27]

S. ZhuZ. Li and C. Zhang, Exponential stability analysis for positive systems with delays, IET Control Theory & Applications, 6 (2012), 761-767.   Google Scholar

show all references

References:
[1]

H. Arneson and C. Langbort, A linear programming approach to routing control in networks of constrained linear positive systems, Automatica, 48 (2012), 800-807.   Google Scholar

[2]

E. K. Boukas and Y. Xia, Descriptor discrete-time systems with random abrupt changes: Stability and stabilisation, International Journal of Control, 81 (2008), 1311-1318.  doi: 10.1080/00207170701769822.  Google Scholar

[3]

R. Bru and S. Romero-Vivo, Positive Systems, Lecture Notes in Control and Information Sciences, vol. 389, Berlin: Springer, 2009. doi: 10.1007/978-3-642-02894-6.  Google Scholar

[4]

S. L. V. Campbell, Singular Systems of Differential Equations, Boston, Mass. -London, 1980.  Google Scholar

[5]

L. Dai, Singular Control Systems, Berlin: Springer, 1989. doi: 10.1007/BFb0002475.  Google Scholar

[6]

Y. EbiharaD. Peaucelle and D. Arzelier, LMI approach to linear positive system analysis and synthesis, Systems & Control Letters, 63 (2014), 50-56.  doi: 10.1016/j.sysconle.2013.11.001.  Google Scholar

[7]

D. EfimovA. Polyakov and J. P. Richard, Interval observer design for estimation and control of time-delay descriptor systems, European Journal of Control, 23 (2015), 26-35.  doi: 10.1016/j.ejcon.2015.01.004.  Google Scholar

[8]

H. FanJ.-E. Feng and M. Meng, Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays, Journal of Industrial and Management Optimization, 12 (2016), 1535-1556.  doi: 10.3934/jimo.2016.12.1535.  Google Scholar

[9]

L. Farina and S. Rinaldi, Positive Linear Systems: Theory and Applications, New York: Wiley-Interscience, 2000. doi: 10.1002/9781118033029.  Google Scholar

[10]

A. Ilchmann and P. H. A. Ngoc, On positivity and stability of linear time-varying Volterra equations, Positivity, 13 (2009), 671-681.   Google Scholar

[11]

T. Kaczorek, Positive 1-D and 2-D Systems, Berlin: Springer, 2002. Google Scholar

[12]

J. Lam and S. Xu, Robust Control and Filtering of Singular Systems, Berlin: Springer, 2006.  Google Scholar

[13]

X. Liu, Constrained control of positive systems with delays, IEEE Transactions on Automatic Control, 54 (2009), 1596-1600.  doi: 10.1109/TAC.2009.2017961.  Google Scholar

[14]

I. Malloci and J. Daafouz, Stabilisation of polytopic singularly perturbed linear systems, International Journal of Control, 85 (2012), 135-142.  doi: 10.1080/00207179.2011.641128.  Google Scholar

[15]

Y. S. MoonP. Park and W. H. Kwon, Robust stabilization of uncertain input-delayed systems using reduction method, Automatica, 37 (2001), 307-312.  doi: 10.1016/S0005-1098(00)00145-X.  Google Scholar

[16]

V. N. Phat and N. H. Sau, On exponential stability of linear singular positive delayed systems, Applied Mathematics Letters, 38 (2014), 67-72.  doi: 10.1016/j.aml.2014.07.003.  Google Scholar

[17]

M. A. Rami, Solvability of static output-feedback stabilization for LTI positive systems, Systms & Control Letters, 60 (2011), 704-708.  doi: 10.1016/j.sysconle.2011.05.007.  Google Scholar

[18]

M. A. RamiF. Tadeo and U. Helmke, Positive observers for linear positive systems, and their implications, International Journal of Control, 84 (2011), 716-725.   Google Scholar

[19]

L. F. Shampine and P. Gahinet, Delay differential-algebraic equations in control theory, Applied Numerical Mathematics, 56 (2006), 574-588.   Google Scholar

[20]

Z. Shu and J. Lam, Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, International Journal of Control,, 81 (2008), 865-882.  doi: 10.1080/00207170701261986.  Google Scholar

[21]

R. J. Vanderbei, Linear Programming: Foundations and Extensions, International Series in Operations Research & Management Science, vol. 37,2001. doi: 10.1007/978-1-4757-5662-3.  Google Scholar

[22]

S. XuP. DoorenR. Stefan and J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Transactions on Automatic Control, 47 (2002), 1122-1128.  doi: 10.1109/TAC.2002.800651.  Google Scholar

[23]

L. ZhangJ. Lam and S. Xu, On positive realness of descriptor systems, IEEE Transactions on Circuits Systems I, Fundamental Theory & Applications, 49 (2002), 401-407.   Google Scholar

[24]

Y. ZhangQ. ZhangT. Tanaka and X. G. Yan, Positivity of continuous-time descriptor systems with time delays, IEEE Trans Auto. Contr., 59 (2014), 3093-3097.   Google Scholar

[25]

Y. ZhaoR. Wang and C. Yin, Optimal dividends and capital injections for a spectrally positive Lévy process, Journal of Industrial and Management Optimization, 13 (2017), 1-21.  doi: 10.3934/jimo.2016001.  Google Scholar

[26]

B. ZhouJ. Hu and G. Duan, Strict linear matrix inequality characterization of positive realness for linear discrete-time descriptor systems, IET Control Theory & Applications, 7 (2010), 1277-1281.   Google Scholar

[27]

S. ZhuZ. Li and C. Zhang, Exponential stability analysis for positive systems with delays, IET Control Theory & Applications, 6 (2012), 761-767.   Google Scholar

Figure 1.  State response of the closed-loop system
[1]

Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021027

[2]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[3]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[4]

Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021006

[5]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[6]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[7]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[10]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021072

[11]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[12]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[13]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[14]

Prabhu Manyem. A note on optimization modelling of piecewise linear delay costing in the airline industry. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1809-1823. doi: 10.3934/jimo.2020047

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Qing Liu, Bingo Wing-Kuen Ling, Qingyun Dai, Qing Miao, Caixia Liu. Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1993-2011. doi: 10.3934/jimo.2020055

[17]

Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021083

[18]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[19]

Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373

[20]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (140)
  • HTML views (708)
  • Cited by (0)

Other articles
by authors

[Back to Top]