|
L. Bai
, J. E. Mitchell
and J.-S. Pang
, On convex quadratic programs with linear complementarity constraints, Computational Optimization and Applications, 54 (2013)
, 517-554.
doi: 10.1007/s10589-012-9497-4.
|
|
J. Beasley
, OR-Library: distributing test problems by electronic mail, Journal of the Operational Research Society, 41 (1990)
, 1069-1072.
|
|
A. Billionnet
, S. Elloumi
and M.-C. Plateau
, Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method, Discrete Applied Mathematics, 157 (2009)
, 1185-1197.
doi: 10.1016/j.dam.2007.12.007.
|
|
S. Burer
, On the copositive representation of binary and continuous nonconvex quadratic programs, Mathematical Programming, 120 (2009)
, 479-495.
doi: 10.1007/s10107-008-0223-z.
|
|
S. Burer
, Optimizing a polyhedral-semidefinite relaxation of completely positive programs, Mathematical Programming Computation, 2 (2010)
, 1-19.
doi: 10.1007/s12532-010-0010-8.
|
|
Y.-L. Chang
, J.-S. Chen
and J. Wu
, Proximal point algorithm for nonlinear complementarity problem based on the generalized fischer-burmeister merit function, Journal of Industrial and Management Optimization, 9 (2013)
, 153-169.
doi: 10.3934/jimo.2013.9.153.
|
|
P. J. Dickinson
and L. Gijben
, On the computational complexity of membership problems for the completely positive cone and its dual, Computational Optimization and Applications, 57 (2014)
, 403-415.
doi: 10.1007/s10589-013-9594-z.
|
|
M. C. Ferris
and J. S. Pang
, Engineering and economic applications of complementarity problems, SIAM Review, 39 (1997)
, 669-713.
doi: 10.1137/S0036144595285963.
|
|
C. Hao
and X. Liu
, A trust-region filter-sqp method for mathematical programs with linear complementarity constraints, Journal of Industrial and Management Optimization, 7 (2011)
, 1041-1055.
doi: 10.3934/jimo.2011.7.1041.
|
|
T. Hoheisel
, C. Kanzow
and A. Schwartz
, Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints, Mathematical Programming, 137 (2013)
, 257-288.
doi: 10.1007/s10107-011-0488-5.
|
|
J. Hu
, J. E. Mitchell
, J.-S. Pang
, K. P. Bennett
and G. Kunapuli
, On the global solution of linear programs with linear complementarity constraints, SIAM Journal on Optimization, 19 (2008)
, 445-471.
doi: 10.1137/07068463x.
|
|
X. X. Huang
, D. Li
and X. Q. Yang
, Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints, Journal of Industrial and Management Optimization, 2 (2006)
, 287-296.
doi: 10.3934/jimo.2006.2.287.
|
|
H. Jiang
and D. Ralph
, QPECgen, a MATLAB generator for mathematical programs with quadratic objectives and affine variational inequality constraints, Computational Optimization and Applications, 13 (1999)
, 25-59.
doi: 10.1023/A:1008696504163.
|
|
J. J. Júdice
and A. Faustino
, The linear-quadratic bilevel programming problem, Information Systems and Operational Research, 32 (1994)
, 87-98.
|
|
S. Kim
, M. Kojima
and K.-C. Toh
, A lagrangian-dnn relaxation: A fast method for computing tight lower bounds for a class of quadratic optimization problems, Mathematical Programming, 156 (2016)
, 161-187.
doi: 10.1007/s10107-015-0874-5.
|
|
S. Leyffer, MacMPEC: AMPL collection of mathematical problems with equilibrium constraints, 2015, URL http://wiki.mcs.anl.gov/leyffer/index.php/MacMPEC.
|
|
C. Lu, W. Xing, S. -C. Fang and Z. Deng, Doubly non-negative relaxation solution based branch-and-bound algorithms for mixed integer quadratic programs, Working paper.
|
|
C. Lu
and X. Guo
, Convex reformulation for binary quadratic programming problems via average objective value maximization, Optimization Letters, 9 (2015)
, 523-535.
doi: 10.1007/s11590-014-0768-0.
|
|
O. Mangasarian
and S. Fromovitz
, The Fritz John necessary optimality conditions in the presence of equality and inequality constraints, Journal of Mathematical Analysis and Applications, 17 (1967)
, 37-47.
doi: 10.1016/0022-247X(67)90163-1.
|
|
P. Pardalom
and S. Jha
, Complexity of uniqueness and local search in quadratic 0-1 programming, Operations Research Letters, 11 (1992)
, 119-123.
doi: 10.1016/0167-6377(92)90043-3.
|
|
T. Rockafellar,
Convex Analysis, Princeton University Press, Princeton, N. J., 1970.
|
|
J. Sun
and S. Zhang
, A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs, European Journal of Operational Research, 207 (2010)
, 1210-1220.
doi: 10.1016/j.ejor.2010.07.020.
|
|
Z. Wen
, D. Goldfarb
and W. Yin
, Alternating direction augmented lagrangian methods for semidefinite programming, Mathematical Programming Computation, 2 (2010)
, 203-230.
doi: 10.1007/s12532-010-0017-1.
|
|
X.-Y. Zhao
, D.-F. Sun
and K.-C. Toh
, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM Journal on Optimizaton, 20 (2010)
, 1737-1765.
doi: 10.1137/080718206.
|
|
J. Zhou
, S.-C. Fang
and W. Xing
, Conic approximation to quadratic optimization with linear complementarity constraints, Computational Optimization and Applications, 66 (2017)
, 92-122.
doi: 10.1007/s10589-016-9855-8.
|